

Protocol API

EtherNet/IP Adapter

V3.3.0

www.hilscher.com
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public

Introduction 2/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Table of Contents

1 Introduction ... 5
1.1 Abstract .. 5
1.2 List of Revisions ... 5
1.3 System Requirements .. 5
1.4 Intended Audience ... 5
1.5 Specifications ... 6

1.5.1 Technical Data .. 6
1.5.2 Limitations ... 7

1.6 Terms, Abbreviations and Definitions .. 8
1.7 References ... 9
1.8 Legal Notes .. 10

1.8.1 Copyright ... 10
1.8.2 Important Notes ... 10
1.8.3 Exclusion of Liability .. 11
1.8.4 Export .. 11

2 Available CIP Classes in the Hilscher EtherNet/IP Stack ... 12
2.1 Introduction ... 12

2.1.1 Class Attributes ... 13
2.1.2 Instance Attributes ... 14
2.1.3 Services ... 14

2.2 Identity Object (Class Code: 0x01) .. 15
2.2.1 Class Attributes ... 15
2.2.2 Instance Attributes ... 15
2.2.3 Supported Services ... 16

2.2.3.1 Common services coming from the EtherNet/IP network or host application 16
2.2.3.2 Hilscher specific services coming from the host application .. 16

2.3 Message Router Object (Class Code: 0x02) ... 17
2.3.1 Class Attributes ... 17
2.3.2 Instance Attributes ... 17
2.3.3 Supported Services ... 17

2.3.3.1 Common services coming from the EtherNet/IP network or host application 17
2.3.3.2 Hilscher specific services coming from the host application .. 18

2.4 Assembly Object (Class Code: 0x04) .. 19
2.4.1 Class Attributes ... 19
2.4.2 Instance Attributes ... 19
2.4.3 Supported Services ... 20

2.4.3.1 Common services coming from the EtherNet/IP network or host application 20
2.4.3.2 Hilscher specific services coming from the host application .. 20

2.5 Connection Manager Object (Class Code: 0x06) .. 21
2.5.1 Class Attributes ... 21
2.5.2 Instance Attributes ... 21
2.5.3 Supported Services ... 21

2.5.3.1 Common services coming from the EtherNet/IP network or host application 21
2.5.3.2 Hilscher specific services coming from the host application .. 22

2.6 Time Sync Object (Class Code: 0x43) ... 23
2.6.1 Class Attributes ... 23
2.6.2 Instance Attributes ... 23
2.6.3 Supported Services ... 25

2.6.3.1 Common services coming from the EtherNet/IP network or host application 25
2.6.3.2 Hilscher specific services coming from the host application .. 25

2.6.4 Instance Attributes ... 25
2.6.4.1 Attribute 300 - Sync Parameters .. 25

2.7 Device Level Ring Object (Class Code: 0x47) ... 27
2.7.1 Class Attributes ... 27
2.7.2 Instance Attributes ... 27
2.7.3 Supported Services ... 28

2.7.3.1 Common services coming from the EtherNet/IP network or host application 28
2.7.3.2 Hilscher specific services coming from the host application .. 28

2.8 Quality of Service Object (Class Code: 0x48) .. 29
2.8.1 Class Attributes ... 29

Introduction 3/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

2.8.2 Instance Attributes ... 29
2.8.3 Supported Services ... 30

2.8.3.1 Common services coming from the EtherNet/IP network or host application 30
2.8.3.2 Hilscher specific services coming from the host application .. 30

2.9 TCP/IP Interface Object (Class Code: 0xF5) ... 31
2.9.1 Class Attributes ... 31
2.9.2 Instance Attributes ... 31
2.9.3 Supported Services ... 32

2.9.3.1 Common services coming from the EtherNet/IP network or host application 32
2.9.3.2 Hilscher specific services coming from the host application .. 32

2.10 Ethernet Link Object (Class Code: 0xF6) .. 33
2.10.1 Class Attributes ... 33
2.10.2 Instance Attributes ... 33
2.10.3 Supported Services ... 34

2.10.3.1 Common services coming from the EtherNet/IP network or host application 34
2.10.3.2 Class-Specific services coming from the EtherNet/IP network or host application 34
2.10.3.3 Hilscher specific services coming from the host application .. 34

2.11 Predefined Connection Object (Class Code: 0x401) ... 36
2.11.1 Class Attributes ... 36
2.11.2 Instance Attributes ... 36
2.11.3 Supported Services ... 36

2.11.3.1 Common services coming from the EtherNet/IP network or host application 36
2.11.3.2 Hilscher specific services coming from the host application .. 37

2.12 IO Mapping Object (Class Code: 0x402) ... 38
2.12.1 Class Attributes ... 38
2.12.2 Instance Attributes ... 38
2.12.3 Supported Services ... 38

2.12.3.1 Common services coming from the EtherNet/IP network or host application 38
2.12.3.2 Hilscher specific services coming from the host application .. 39

3 Getting Started/ Configuration .. 40
3.1 Configuration Procedures .. 40

3.1.1 Using the Configuration Tool SYCON.net ... 40
3.1.2 Using the netX configuration and diagnostic utility .. 40
3.1.3 Using the Packet API of the EtherNet/IP Protocol Stack ... 40

3.2 Configuration Using the Packet API ... 40
3.2.1 Basic Configuration Set ... 42

3.2.1.1 Configuration Packets .. 42
3.2.1.2 Optional Request Packets ... 42
3.2.1.3 Indication Packets the Host Application Needs to Handle ... 43
3.2.1.4 Configuration Sequence .. 44

3.2.2 Extended Configuration Set ... 45
3.2.2.1 Configuration Packets .. 45
3.2.2.2 Optional Request Packets ... 45
3.2.2.3 Indication Packets the Host Application Needs to Handle ... 46
3.2.2.4 Configuration Sequence .. 46

3.3 Example Configuration Process ... 48
3.3.1 Handling of Configuration Data Changes .. 48

4 The Application Interface .. 49
4.1 Configuring the EtherNet/IP Adapter ... 49

4.1.1 Configure the Device with Configuration Parameter .. 50
4.1.2 Set Parameter Flags.. 60
4.1.3 Finish configuration of CIP Objects ... 63
4.1.4 Register an additional Object Class at the Message Router ... 65
4.1.5 Register a new Assembly Instance ... 68
4.1.6 Set the Device’s Identity Information ... 74
4.1.7 Register Service .. 79
4.1.8 Set Parameter ... 82
4.1.9 CIP Service Request ... 85
4.1.10 Set Watchdog Time ... 92
4.1.11 Register Application... 92
4.1.12 Start/Stop Communication ... 92
4.1.13 Channel Init ... 92
4.1.14 Modify Firmware Parameter .. 92

4.2 Acyclic events indicated by the stack ... 93
4.2.1 Indication of a Reset Request from the network .. 94
4.2.2 Connection State Change Indication ... 98
4.2.3 Indication of acyclic Data Transfer .. 107

Introduction 4/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

4.2.4 CIP Object Change Indication ... 120
4.2.5 Link Status Change ... 123
4.2.6 Forward_Open Indication .. 126
4.2.7 Forward_Open_Completion Indication .. 132
4.2.8 Forward_Close Indication .. 135

4.3 Additional services requested by the application ... 140
4.3.1 Get Module Status/ Network Status .. 141
4.3.2 Get Watchdog Time... 143
4.3.3 Get DPM I/O Information ... 144
4.3.4 Unregister Application ... 144
4.3.5 Delete Configuration .. 144
4.3.6 Lock/Unlock Configuration ... 144
4.3.7 Get Firmware Parameter ... 144
4.3.8 Get Firmware Identification .. 144

5 Status/Error Codes Overview .. 145
5.1 Stack Specific Error Codes .. 145
5.2 General EtherNet/IP Error Codes .. 148

6 Appendix ... 150
6.1 Module and Network Status ... 150

6.1.1 Module Status ... 150
6.1.2 Network Status .. 151

6.2 Quality of Service (QoS) .. 151
6.2.1 Introduction .. 151
6.2.2 DiffServ .. 152
6.2.3 802.1D/Q Protocol ... 153
6.2.4 The QoS Object ... 154

6.2.4.1 Enable 802.1Q (VLAN tagging).. 154
6.3 DLR .. 155

6.3.1 Ring Supervisors ... 155
6.3.2 Precedence Rule for Multi-Supervisor Operation .. 156
6.3.3 Beacon and Announce Frames ... 156
6.3.4 Ring Nodes .. 157
6.3.5 Normal Network Operation .. 159
6.3.6 Rapid Fault/Restore Cycles ... 159
6.3.7 States of Supervisor .. 159

6.4 Quick Connect .. 162
6.4.1 Introduction .. 162
6.4.2 Requirements .. 163

6.5 Hilscher specific CIP services .. 164
6.5.1 Common .. 164

6.5.1.1 Reset Object (0xFF32) ... 164
6.5.1.2 Get Attribute Option (0xFF33) .. 164
6.5.1.3 Set Attribute Option (0xFF34) .. 165

6.5.2 Assembly Object ... 165
6.5.2.1 Create (0x0401) ... 165
6.5.2.2 Delete (0x0402) ... 166
6.5.2.3 Add Member (0x0403) ... 166
6.5.2.4 Delete Member (0x0404) ... 167

6.6 List of Figures ... 168
6.7 List of Tables .. 169
6.8 Contacts ... 172

Introduction 5/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

1 Introduction
1.1 Abstract
This manual describes the user interface of the EtherNet/IP Adapter implementation on the netX
chip. The aim of this manual is to support the integration of devices based on the netX chip into
own applications based on driver functions or direct access to the dual-port memory.

The general mechanism of data transfer, for example how to send and receive a message or how
to perform a warmstart is independent from the protocol. These procedures are common to all
devices and are described in the ‘netX DPM Interface manual’.

1.2 List of Revisions
Rev Date Name Revisions
1 2015-04-07 RH, RG Created
2 2015-04-30 KM Section Time Sync Object (Class Code: 0x43) added

Description of packet EIP_OBJECT_MR_REGISTER_REQ adapted
Figure “Non-Volatile CIP Object Attributes” adapted

3 2015-01-12 KM Section Ethernet Link Object (Class Code: 0xF6): Set object revision to 4, Set
default value of class attribute 7 to 11, Added new instance attribute 11, class-
specific service “Get and Clear” added.
Section Time Sync Object (Class Code: 0x43): Common Services “Get Attributes
List” and “Set Attributes List” added.
Section Set Parameter added.
Section Forward_Open Indication added.
Section Forward_Open_Completion Indication added.
Section Forward_Close Indication added.

Table 1: List of Revisions

1.3 System Requirements
This software package has following system requirements to its environment:

 netX-Chip as CPU hardware platform

 operating system rcX

1.4 Intended Audience
This manual is suitable for software developers with the following background:

 Knowledge of the netX DPM Interface manual

 Knowledge of the Common Industrial Protocol (CIPTM) Specification Volume 1

 Knowledge of the Common Industrial Protocol (CIPTM) Specification Volume 2

Introduction 6/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

1.5 Specifications
The data below applies to the EtherNet/IP Adapter firmware and stack version V3.3.0.

This firmware/stack has been written to meet the requirements of a subset outlined in the CIP Vol.
1 and CIP Vol. 2 specifications.

1.5.1 Technical Data
Maximum number of input data 504 bytes per assembly instance

Maximum number of output data 504 bytes per assembly instance

IO Connection Types (implicit) Exclusive Owner,
Listen Only,
Input only

IO Connection Trigger Types Cyclic, minimum 1 ms*
Application Triggered, minimum 1 ms*
Change Of State, minimum 1 ms*

Explicit messages connections 10

Implicit message connections 5

Unconnected Message Manager (UCMM) 10

Max. number of user specific objects 20

Max. number of assembly instances 10

Predefined standard objects Identity Object (0x01)
Message Router Object (0x02)
Assembly Object (0x04)
Connection Manager (0x06)
Time Sync Object (0x43)
DLR Object (0x47)
QoS Object (0x48)
TCP/IP Interface Object (0xF5)
Ethernet Link Object (0xF6)

DHCP supported

BOOTP supported

Baud rates 10 and 100 MBit/s

Duplex modes Half Duplex, Full Duplex, Auto-Negotiation

MDI modes MDI, MDI-X, Auto-MDIX

Data transport layer Ethernet II, IEEE 802.3

ACD supported

Integrated switch supported

Reset services Identity Object Reset Service of Type 0 and 1

* depending on number of connections and number of input and output data

Introduction 7/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Firmware/stack available for netX

netX 50 no

netX 51 no

netX 52 yes

netX 100, netX 500 no

Configuration

 Configuration by tool SYCON.net (Download or exported configuration of two files named
config.nxd and nwid.nxd)

 Configuration by packets

Diagnostic

Firmware supports common diagnostic in the dual-port-memory for loadable firmware

1.5.2 Limitations
 TAGs are not supported

Introduction 8/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

1.6 Terms, Abbreviations and Definitions
Term Description

ACD Address Conflict Detection
AP Application on top of the Stack
API Actual Packet Interval or Application Programmer Interface
AS Assembly Object
BOOTP Boot Protocol
CIP Common Industrial Protocol
CM Connection Manager
DHCP Dynamic Host Configuration Protocol
DiffServ Differentiated Services
DLR Device Level Ring (i.e. ring topology on device level)

DPM Dual Port Memory

EIM Ethernet/IP Scanner (=Master)

EIP Ethernet/IP
EIS Ethernet/IP Adapter (=Slave)

ENCAP Encapsulation Layer
ERC Extended Error Code
GRC Generic Error Code
IANA Internet Assigned Numbers Authority
ID Identity Object
IP Internet Protocol
LSB Least Significant Byte
MR Message Router Object
MSB Most Significant Byte
ODVA Open DeviceNet Vendors Association
OSI Open Systems Interconnection (according to ISO 7498)
QoS Quality of Service
RPI Requested Packet Interval
TCP Transmission Control Protocol
UCMM Unconnected Message Manager
VLAN Virtual Local Area Network

Table 2: Terms, Abbreviations and Definitions

All variables, parameters, and data used in this manual have the LSB/MSB (“Intel”) data
representation. This corresponds to the convention of the Microsoft C Compiler.

Introduction 9/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

1.7 References
This document is based on the following specifications:

[1] Hilscher Gesellschaft für Systemautomation mbH: Dual-Port Memory Interface Manual,
netX based products. Revision 12, English, 2012

[2] Hilscher Gesellschaft für Systemautomation mbH: TCP/IP Protocol Interface Manual,
Revision 11, English, 2010

[3] ODVA: The CIP Networks Library, Volume 1, “Common Industrial Protocol (CIP™)”, Edition
3.18, April 2015

[4] ODVA: The CIP Networks Library, Volume 2, “EtherNet/IP Adaptation of CIP”, Edition 1.19,
April 2015

[5] Hilscher Gesellschaft für Systemautomation mbH: Application Note: Functions of the
Integrated WebServer, Revision 4, English, 2012

[6] The Common Industrial Protocol (CIP™) and the Family of CIP Networks, Publication
Number: PUB00123R0, downloadable from ODVA website (http://www.odva.org/)

[7] Hilscher Gesellschaft für Systemautomation mbH: Application Note: CIP Sync, Revision 5,
English, 2015 (Document ID: DOC130104AN05EN)

http://www.odva.org/

Introduction 10/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

1.8 Legal Notes

1.8.1 Copyright
© 2015-2016 Hilscher Gesellschaft für Systemautomation mbH

All rights reserved.

The images, photographs and texts in the accompanying material (user manual, accompanying
texts, documentation, etc.) are protected by German and international copyright law as well as
international trade and protection provisions. You are not authorized to duplicate these in whole or
in part using technical or mechanical methods (printing, photocopying or other methods), to
manipulate or transfer using electronic systems without prior written consent. You are not permitted
to make changes to copyright notices, markings, trademarks or ownership declarations. The
included diagrams do not take the patent situation into account. The company names and product
descriptions included in this document may be trademarks or brands of the respective owners and
may be trademarked or patented. Any form of further use requires the explicit consent of the
respective rights owner.

1.8.2 Important Notes
The user manual, accompanying texts and the documentation were created for the use of the
products by qualified experts, however, errors cannot be ruled out. For this reason, no guarantee
can be made and neither juristic responsibility for erroneous information nor any liability can be
assumed. Descriptions, accompanying texts and documentation included in the user manual do
not present a guarantee nor any information about proper use as stipulated in the contract or a
warranted feature. It cannot be ruled out that the user manual, the accompanying texts and the
documentation do not correspond exactly to the described features, standards or other data of the
delivered product. No warranty or guarantee regarding the correctness or accuracy of the
information is assumed.

We reserve the right to change our products and their specification as well as related user
manuals, accompanying texts and documentation at all times and without advance notice, without
obligation to report the change. Changes will be included in future manuals and do not constitute
any obligations. There is no entitlement to revisions of delivered documents. The manual delivered
with the product applies.

Hilscher Gesellschaft für Systemautomation mbH is not liable under any circumstances for direct,
indirect, incidental or follow-on damage or loss of earnings resulting from the use of the information
contained in this publication.

Introduction 11/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

1.8.3 Exclusion of Liability
The software was produced and tested with utmost care by Hilscher Gesellschaft für
Systemautomation mbH and is made available as is. No warranty can be assumed for the
performance and flawlessness of the software for all usage conditions and cases and for the
results produced when utilized by the user. Liability for any damages that may result from the use
of the hardware or software or related documents, is limited to cases of intent or grossly negligent
violation of significant contractual obligations. Indemnity claims for the violation of significant
contractual obligations are limited to damages that are foreseeable and typical for this type of
contract.

It is strictly prohibited to use the software in the following areas:

 for military purposes or in weapon systems;

 for the design, construction, maintenance or operation of nuclear facilities;

 in air traffic control systems, air traffic or air traffic communication systems;

 in life support systems;

 in systems in which failures in the software could lead to personal injury or injuries leading to
death.

We inform you that the software was not developed for use in dangerous environments requiring
fail-proof control mechanisms. Use of the software in such an environment occurs at your own risk.
No liability is assumed for damages or losses due to unauthorized use.

1.8.4 Export
The delivered product (including the technical data) is subject to export or import laws as well as
the associated regulations of different counters, in particular those of Germany and the USA. The
software may not be exported to countries where this is prohibited by the United States Export
Administration Act and its additional provisions. You are obligated to comply with the regulations at
your personal responsibility. We wish to inform you that you may require permission from state
authorities to export, re-export or import the product.

Available CIP Classes in the Hilscher EtherNet/IP Stack 12/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

2 Available CIP Classes in the Hilscher EtherNet/IP
Stack

The following subsections describe all default CIP object classes that are available within the
Hilscher EtherNet/IP stack.

Figure 1 gives an overview about the available CIP objects and their instances assuming a default
configuration (assembly instances 100 and 101).

Figure 1: Default Hilscher Device Object Model

2.1 Introduction
Every CIP class is described using four tables. The first table describes the class attributes, the
second one describes the instance attributes, and the last two ones give an overview of service the
object supports.

A Class Attribute is an attribute whose scope is that of the class as a whole, rather than any one
particular instance. Therefore, the list of Class Attributes is different than the list of Instance
Attributes. CIP defines the Instance ID value zero (0) to designate the Class level versus a specific
Instance within the Class.

Available CIP Classes in the Hilscher EtherNet/IP Stack 13/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

2.1.1 Class Attributes
Class Attributes are defined using the following terms:

Class Attributes (Instance 0)

Attr
ID

Name

Access

Description
Default
Value

Supported
by default from

Network
from
Host

1 2 3 4 5 6 7
Table 3: Introduction of Class Attribute Description

1. The Attribute ID is an integer identification value assigned to an attribute. Use the Attribute
ID in the Get_Attributes and Set_Attributes services list. The Attribute ID identifies the
particular attribute being accessed.

2. Name refers to the attribute.

3. The Access From Network specifies how a requestor can access an attribute from the
EtherNet/IP network. The definitions are:

 Set (Settable) - The attribute can be accessed by at least one of the set services
(Set_Attribute_Single/ Set_Attribute_All).

 Get (Gettable) - The attribute can be accessed by at least one of the get services
(Get_Attribute_Single/ Get_Attribute_All).

The Access Rule Host specifies how the Host Application (running on the netX or on a host
processor) can access an attribute using the packet API of the stack (see description of
packet “CIP Service Request” in section 4.1.9).

The definitions for access rules are:

 Set (Settable) - The attribute can be accessed by at least one of the set services
(Set_Attribute_Single/ Set_Attribute_All).

 Get (Gettable) - The attribute can be accessed by at least one of the get services
(Get_Attribute_Single/ Get_Attribute_All).

4. Description of Attribute provides general information about the attribute.

5. Default value provides information about the default value of the attribute.

6. Supported by default indicates whether this attribute is supported by the stack per default.

Some object attributes are implemented within the stack, but are not accessible from the
EtherNet/IP network per default. An additional service needs to be performed in order to
“activate” this attribute (Hilscher specific service “Set Attribute Option” – see 6.5.1.3).
Activating those attributes is always optional.

  The attribute is supported and accessible per default.

  The attribute is NOT supported per default, but it can be activated.

Available CIP Classes in the Hilscher EtherNet/IP Stack 14/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

2.1.2 Instance Attributes
An Instance Attribute is an attribute that is unique to an object instance and not shared by the
object class. Instance Attributes are defined in the same terms as Class Attributes.

Instance Attributes (Instance 1-n)

Attr
ID

Name

Access

Description
Default
Value

Supported
by default from

Network
from
Host

1 2 3 4 5 6 7
Table 4: Introduction of Instance Attribute Description

2.1.3 Services
Services can either address the class level (instance ID 0) or the instance level (instance ID 1-n) of
a CIP object. Additionally, service can be sent by a device that is located inside the EtherNet/IP
network or it can be sent by the host application of the stack.

Therefore, the services an object supports are described with two tables. The first table shows the
common services that can be sent by both a device within the EtherNet/IP network or the host
application of the stack. The second table shows the Hilscher specific services that can only be
sent by the host application.

Both tables have the same format:

Service
Code

Name Addressing the object’s Description

Class
Level

Instance
Level

1 2 3 4 5
Table 5: Introduction of Service Description

1. The Service Code is a hexadecimal value assigned to a specific CIP service. The service
can either be defined within the EtherNet/IP specification or is a Hilscher specific service
code (Hilscher specific services are described separately in chapter 6.5.1 “Hilscher specific
CIP services”).

2. The Name refers to the service.

3. Addressing the object’s class level

  The stack supports this service if it addresses the class level (instance 0).

  The stack does not support this service for the class level.

4. Addressing the object’s instance level

  The stack supports this service if it addresses the instance level (instance 1-n).

  The stack does not support this service for the instance level.

5. The Description provides general information about the service.

Available CIP Classes in the Hilscher EtherNet/IP Stack 15/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

2.2 Identity Object (Class Code: 0x01)
The Identity Object provides identification and general information about the device. The first and
only instance identifies the whole device. It is used for electronic keying and by applications
wishing to determine what devices are on the network.

2.2.1 Class Attributes

Attr
ID

Name

Access

Description
Default
Value

Supported
by default from

Network
from
Host

1 Revision Get Set Revision of this object (1)

2 Max. Instance Get Set
Maximum instance number of an object
currently created in this class level of the
device

(1)

3
Number of
Instances

Get Set
The number of Instances currently
created in this class

(1)

6
Maximum ID

Number Class
Attributes

Get Set
The attribute ID number of the last class
attribute of the class definition
implemented in the device.

(7)

7

Maximum ID

Number
Instance

Attributes

Get Set
The attribute ID number of the last
instance attribute of the class definition
implemented in the device.

(10)

Table 6: Identity Object - Class Attributes

2.2.2 Instance Attributes

Attr
ID

Name

Access

Description
Default
Value

Supported
by default from

Network
from
Host

1 Vendor ID Get Set Vendor Identification
(0x011B)

Hilscher

2 Device Type Get Set Indication of general type of product (1)

3 Product Code Get Set
Identification of a particular product of an
individual vendor

(1)

4

Revision Get Set Revision of the product (1.1)

5 Status Get Set Summary status of device
6 Serial Number Get Set Serial number of device 1

7 Product Name Get Set
Human readable

identification
“netX”

8 State Get Get Present state of the device

9
Conf. Consist.
Value

Get Set Configuration Consistency Value 0

10
Heart Beat
Interval

Get Set
The nominal interval between heartbeat
messages in seconds.

0

Table 7: Identity Object - Instance Attributes

Available CIP Classes in the Hilscher EtherNet/IP Stack 16/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

2.2.3 Supported Services

2.2.3.1 Common services coming from the EtherNet/IP network or host
application

Service
Code

Name Addressing the object’s Description

Class
Level

Instance
Level

0x01 Get Attribute All Returns content of instance or class
attributes

0x05 Reset Reset the device

0x0E Get Attribute Single Returns value of attribute

0x10 Set Attribute Single Modifies value of attribute
Table 8: Identity Object - Common Services

2.2.3.2 Hilscher specific services coming from the host application

Service
Code

Name Addressing the object’s Description

Class
Level

Instance
Level

0xFF32 Reset Object Reset object to default values

0xFF33 Get Attribute Option Returns options of an attribute

0xFF34 Set Attribute Option Modifies options of an attribute
Table 9: Identity Object - Hilscher Specific Services

Available CIP Classes in the Hilscher EtherNet/IP Stack 17/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

2.3 Message Router Object (Class Code: 0x02)
The Message Router Object provides a messaging connection point through which a client may
address a service to any object class or instance residing in the physical device.

2.3.1 Class Attributes

Attr
ID

Name

Access

Description
Default
Value

Supported
by default from

Network
from
Host

1 Revision Get Set Revision of this object (1)

2 Max. Instance Get Set
Maximum instance number of an object
currently created in this class level of the
device

(1)

3
Number of
Instances

Get Set
The number of Instances currently
created in this class

(1)

6
Maximum ID

Number Class
Attributes

Get Set
The attribute ID number of the last class
attribute of the class definition
implemented in the device.

(7)

7

Maximum ID

Number
Instance

Attributes

Get Set
The attribute ID number of the last
instance attribute of the class definition
implemented in the device.

(0)

Table 10: Message Router Object - Class Attributes

2.3.2 Instance Attributes
The Message Router object does not have instance attributes.

2.3.3 Supported Services

2.3.3.1 Common services coming from the EtherNet/IP network or host
application

Service
Code

Name Addressing the object’s Description

Class
Level

Instance
Level

0x0E Get Attribute Single Returns value of attribute
Table 11: Message Router Object - Common Services

Available CIP Classes in the Hilscher EtherNet/IP Stack 18/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

2.3.3.2 Hilscher specific services coming from the host application

Service
Code

Name Addressing the object’s Description

Class
Level

Instance
Level

0xFF33 Get Attribute Option Returns options of an attribute

0xFF34 Set Attribute Option Modifies options of an attribute
Table 12: Message Router Object - Hilscher Specific Services

Available CIP Classes in the Hilscher EtherNet/IP Stack 19/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

2.4 Assembly Object (Class Code: 0x04)
The Assembly Object binds attributes of multiple objects, which allows data to or from each object
to be sent or received over a single connection. Assembly Objects can be used to bind produced
data or consumed data.

2.4.1 Class Attributes

Attr
ID

Name

Access

Description
Default
Value

Supported
by default from

Network
from
Host

1 Revision Get Set Revision of this object (2)

2 Max. Instance Get Set
Maximum instance number of an object
currently created in this class level of the
device

(0xFFFF)

3
Number of
Instances

Get Set
The number of Instances currently
created in this class

(0)

6
Maximum ID

Number Class
Attributes

Get Set
The attribute ID number of the last class
attribute of the class definition
implemented in the device.

(7)

7

Maximum ID

Number
Instance

Attributes

Get Set
The attribute ID number of the last
instance attribute of the class definition
implemented in the device.

(7)

Table 13: Assembly Object - Class Attributes

2.4.2 Instance Attributes

Attr
ID

Name

Access

Description
Default
Value

Supported
by default from

Network
from
Host

1
Number of
Member None Set Vendor Identification

2 Member None None Member list
3 Data Get Set
4

Size Get Set Number of bytes in Attribute 3

300
Member data
list

None None Data of assembly members

301 Parameter None Get Assembly parameter
302 Status None Get Status of the assembly

Table 14: Assembly Object - Instance Attributes

Available CIP Classes in the Hilscher EtherNet/IP Stack 20/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

2.4.3 Supported Services

2.4.3.1 Common services coming from the EtherNet/IP network or host
application

Service
Code

Name Addressing the object’s Description

Class
Level

Instance
Level

0x0E Get Attribute Single Returns value of attribute

0x10 Set Attribute Single Modifies value of attribute
Table 15: Assembly Object - Common Services

2.4.3.2 Hilscher specific services coming from the host application

Service
Code

Name Addressing the object’s Description

Class
Level

Instance
Level

0xFF33 Get Attribute Option Returns options of an attribute

0xFF34 Set Attribute Option Modifies options of an attribute

0x401 Assembly Create Creates an new assembly instance

0x402 Assembly Delete Deletes an assembly instance

0x403 Add Member Add an member to assembly

0x404 Del Member Remove member from Assembly

0xFF32 Reset Object Reset object to default values

0xFF33 Get Attribute Option Returns options of an attribute

0xFF34 Set Attribute Option Modifies options of an attribute
Table 16: Assembly Object - Hilscher Specific Services

Available CIP Classes in the Hilscher EtherNet/IP Stack 21/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

2.5 Connection Manager Object (Class Code: 0x06)
The Connection Manager Class allocates and manages the internal resources associated with
both I/ O and Explicit Messaging Connections.

2.5.1 Class Attributes

Attr
ID

Name

Access

Description
Default
Value

Supported
by default from

Network
from
Host

1 Revision Get Set Revision of this object (1)

2 Max. Instance Get Set
Maximum instance number of an object
currently created in this class level of the
device

(1)

3
Number of
Instances

Get Set
The number of Instances currently
created in this class

(1)

6
Maximum ID

Number Class
Attributes

Get Set
The attribute ID number of the last class
attribute of the class definition
implemented in the device.

(7)

7

Maximum ID

Number
Instance

Attributes

Get Set
The attribute ID number of the last
instance attribute of the class definition
implemented in the device.

(0)

Table 17: Connection Manager Object - Class Attributes

2.5.2 Instance Attributes

Attr
ID

Name

Access

Description
Default
Value

Supported
by default from

Network
from
Host

1
Open
Requests

Get Set
Number of Forward Open service
requests received.

(0)

Table 18: Connection Manager Object - Instance Attributes

2.5.3 Supported Services

2.5.3.1 Common services coming from the EtherNet/IP network or host
application

Service
Code

Name Addressing the object’s Description

Class
Level

Instance
Level

0x0E Get Attribute Single Returns value of attribute

0x10 Set Attribute Single Modifies value of attribute

0x54 Forward Open Open new connection

0x4E Forward Close Close connection
Table 19: Connection Manager Object - Common Services

Available CIP Classes in the Hilscher EtherNet/IP Stack 22/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

2.5.3.2 Hilscher specific services coming from the host application

Service
Code

Name Addressing the object’s Description

Class
Level

Instance
Level

0xFF32 Reset Object Reset object to default values

0xFF33 Get Attribute Option Returns options of an attribute

0xFF34 Set Attribute Option Modifies options of an attribute
Table 20: Connection Manager Object - Hilscher Specific Services

Available CIP Classes in the Hilscher EtherNet/IP Stack 23/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

2.6 Time Sync Object (Class Code: 0x43)
The Time Sync Object (used for CIP SYNC) provides a CIP interface to the IEEE 1588 (IEC
61588) Standard for a Precision Clock Synchronization Protocol for Networked Measurement and
Control Systems, commonly referred to as the Precision Time Protocol (PTP). When starting the
stack, this object is not available right away. It needs to be activated using the packet
EIP_OBJECT_MR_REGISTER_REQ (0x1A02).

For further information regarding CIP Sync and how it is used with the Hilscher EtherNet/IP stack
have a look at the corresponding Application Note [7].

2.6.1 Class Attributes

Attr
ID

Name

Access

Description
Default
Value

Supported
by default from

Network
from
Host

1 Revision Get Set Revision of this object (3)

2 Max. Instance Get Set
Maximum instance number of an object
currently created in this class level of the
device

(1)

3
Number of
Instances Get Set

The number of Instances currently
created in this class (1)

6
Maximum ID

Number Class
Attributes

Get Set
The attribute ID number of the last class
attribute of the class definition
implemented in the device.

(7)

7

Maximum ID

Number
Instance

Attributes

Get Set
The attribute ID number of the last
instance attribute of the class definition
implemented in the device.

(28)

Table 21: Time Sync Object - Class Attributes

2.6.2 Instance Attributes

Attr
ID

Name

Access

Description
Default
Value

Supported
by default from

Network
from
Host

1 PTPEnable Set Set PTP Enable
0
(Disabled)

2
IsSynchronize
d

Get Get Local clock is synchronized with master 0

3
SystemTimeMi
croseconds Get Get

Current value of system_time in
microseconds 0

4
SystemTimeN
anoseconds

Get Get
Current value of system_time in
nanoseconds

0

5
OffsetFromMa
ster Get Get

Offset between local clock and master
clock 0

6
MaxOffsetFro
mMaster

Set Set
Maximum offset between local clock
and master clock

0

7
MeanPathDela
yToMaster Get Get Mean path delay to master 0

Available CIP Classes in the Hilscher EtherNet/IP Stack 24/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Attr
ID

Name

Access

Description
Default
Value

Supported
by default from

Network
from
Host

8
GrandMasterC
lockInfo Get Get Grandmaster Clock Info all 0

9
ParentClockInf
o

Get Get Parent Clock Info all 0

10 LocalClockIno Get Get Local Clock Info all 0

11
NumberOfPort
s

Get Get Number of ports 1

12 PortStateInfo Get Get Port state info disabled
13 PortEnableCfg Set Set Port enable cfg enabled

14
PortLogAnnou
nceIntervalCfg Set Set Port log announce interval cfg 0

15
PortLogSyncIn
tervalCfg

Set Set Port log sync interval cfg 0

16 Priority1 Priority 1
17 Priority2 Priority 2

18
DomainNumb
er Set Set Domain number 0

19 ClockType Get Get Clock type 0

20
ManufactureId
entity Get Get Manufacture identity all 0

21
ProductDescri
ption

Get Get Product description “”

22 RevisionData Get Get Revision data “”

23
UserDescriptio
n

Get Get User description “”

24
PortProfileIden
tityInfo Get Get Port profile identity info

00-21-6C-
00-01-00

25
PortPhysicalA
ddressInfo

Get Get Port physical address info all 0

26
PortProtocolA
ddressInfo Get Get Port protocol address info all 0

27
StepsRemove
d

Get Get Steps removed 0

28
SystemTimeA
ndOffset Get Get System time and offset all 0

300
SyncParamete
rs

 Set Synchronization Parameters

Ta19ble 22: Time Sync Object - Instance Attributes

Available CIP Classes in the Hilscher EtherNet/IP Stack 25/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

2.6.3 Supported Services

2.6.3.1 Common services coming from the EtherNet/IP network or host
application

Service
Code

Name Addressing the object’s Description

Class
Level

Instance
Level

0x03 Get Attributes List

The Get_Attribute_List service returns the
contents of the selected

attributes of the specified object class or
instance

0x04 Set Attributes List
The Set_Attribute_List service sets the
contents of selected attributes of the
specified object class or instance

0x0E Get Attribute Single Returns value of attribute

0x10 Set Attribute Single Modifies value of attribute
Table 23: Time Sync Object - Common Services

2.6.3.2 Hilscher specific services coming from the host application

Service
Code

Name Addressing the object’s Description

Class
Level

Instance
Level

0xFF32 Reset Object Reset object to default values

0xFF33 Get Attribute Option Returns options of an attribute

0xFF34 Set Attribute Option Modifies options of an attribute
Table 24: Time Sync Object - Hilscher Specific Services

2.6.4 Instance Attributes

2.6.4.1 Attribute 300 - Sync Parameters

Attribute 300 of the Time Sync object is used to set some required synchronization-related
parameters. These are used to adjust the interval and offset times for the hardware
synchronization signals Sync 0 and Sync 1.

Basically, the Sync 0 signal is the interrupt that the host application will receive in order to retrieve
the current system time. On each event the EtherNet/IP stack writes the current system time into
the extended data area of the Dual Port Memory interface (for further information see CIP Sync
Application Note [7]).

Note: Currently, only Sync 0 can be used.

Available CIP Classes in the Hilscher EtherNet/IP Stack 26/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Time Sync Object- Attribute 300

Variable Type Value/Range Description
ulSync0Interval UINT32 0, 10000 …

1000000000

Default:
1000000000

Sync0 Interval

This parameter specifies the interval of the Sync 0
signal in nanoseconds.
The value 0 means the signal is deactivated.

The starting point of the Sync0 signal is dependent on
the Sync0 Offset (see parameter ulSync0Offset).

ulSync0Offset UINT32 smaller than
ulSync0Interv
al

Default:
0

Sync 0 Offset

This parameter specifies a nanosecond offset for the
Sync 0 signal relative to the system time (Time of the
Sync Master).

ulSync1Interval UINT32 0, 10000 …
1000000000

Default:
1000000000

Sync1 Interval

This parameter specifies the interval of the Sync 1
signal in nanoseconds.
The value 0 means the signal is deactivated.

The starting point of the Sync1 signal is dependent on
the Sync1 Offset (see parameter ulSync1Offset).

ulSync1Offset UINT32 smaller than
ulSync1Interv
al

Default:
150

Sync 1 Offset

This parameter specifies a nanosecond offset for the
Sync 1 signal relative to the system time (Time of the
Sync Master).

Table 25: Time Sync Object – Attribute 300

Available CIP Classes in the Hilscher EtherNet/IP Stack 27/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

2.7 Device Level Ring Object (Class Code: 0x47)
The Device Level Ring (DLR) Object provides the configuration of the DLR protocol. DLR is used
for Ethernet Ring topology.

2.7.1 Class Attributes

Attr
ID

Name

Access

Description Default Value
Supported
by default from

Network
from
Host

1 Revision Get Set Revision of this object (3)

2 Max. Instance Get Set
Maximum instance number of an
object currently created in this
class level of the device

(1)

3
Number of
Instances

Get Set
The number of Instances
currently created in this class

(1)

6
Maximum ID

Number Class
Attributes

Get Set

The attribute ID number of the
last class attribute of the class
definition implemented in the
device.

(7)

7

Maximum ID

Number
Instance

Attributes

Get Set

The attribute ID number of the
last instance attribute of the class
definition implemented in the
device.

(12)

Table 26: DLR Object - Class Attributes

2.7.2 Instance Attributes

Attr
ID

Name

Access

Description Default Value
Supported
by default from

Network
from
Host

1
Network
Topology Get Get Current network topology 0 – Linear

2
Network
Status

Get Get Current network status 0 – Normal

10
Active
Supervisor Get Get Active Supervisor Address (0)

12

Capability
Flags

Get Get DLR capability of the device

0x82 (Beacon
based Ring Node,
Flush Table frame
support)

Table 27: DLR Object - Instance Attributes

Available CIP Classes in the Hilscher EtherNet/IP Stack 28/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

2.7.3 Supported Services

2.7.3.1 Common services coming from the EtherNet/IP network or host
application

Service
Code

Name

Addressing the object’s

Description Class
Level

Instance
Level

0x01 Get Attribute All Returns content of instance or class attributes

0x0E Get Attribute Single Returns value of attribute
Table 28: DLR Object - Common Services

2.7.3.2 Hilscher specific services coming from the host application

Service
Code

Name

Addressing the object’s

Description Class
Level

Instance
Level

0xFF32 Reset Object Reset object to default values

0xFF33 Get Attribute Option Returns options of an attribute

0xFF34 Set Attribute Option Modifies options of an attribute
Table 29: DLR Object - Hilscher Specific Service

Available CIP Classes in the Hilscher EtherNet/IP Stack 29/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

2.8 Quality of Service Object (Class Code: 0x48)
The Quality of Service (QoS) Object provides the configuration of frame priorities. Ethernet frame
priorities are set at the Differentiate Service Code Points (DSCP) or at the 802.1Q Tag.

2.8.1 Class Attributes

Attr
ID

Name

Access

Description Default Value
Supported
by default from

Network
from
Host

1 Revision Get Set Revision of this object (3)

2 Max. Instance Get Set
Maximum instance number of an
object currently created in this
class level of the device

(1)

3
Number of
Instances

Get Set
The number of Instances
currently created in this class

(1)

6
Maximum ID

Number Class
Attributes

Get Set

The attribute ID number of the
last class attribute of the class
definition implemented in the
device.

(7)

7

Maximum ID

Number
Instance

Attributes

Get Set

The attribute ID number of the
last instance attribute of the class
definition implemented in the
device.

(12)

Table 30: QoS Object - Class Attributes

2.8.2 Instance Attributes

Attr
ID

Name

Access

Description Default Value
Supported
by default from

Network
from
Host

1
802.1Q Tag
Enable

Get Get Current network topology 0 - disabled

2
DSCP PTP
Event

Set Set
DSCP value for PTP Event
frames

 (59)

3
DSCP PTP
General

Set Set
DSCP value for PTP general
frames

 (47)

4

DSCP Urgent Set Set

DSCP value for implicit
messages with urgent priority

 (55)

5
DSCP
Scheduled

Set Set
DSCP value for implicit
messages with scheduled priority

 (47)

6 DSCP High Set Set
DSCP value for implicit
messages with high priority (43)

7 DSCP Low Set Set
DSCP value for implicit
messages with low priority

 (31)

8 DSCP Explicit Set Set
DSCP value for explicit
messages (27)

Table 31: QoS Object - Instance Attributes

Available CIP Classes in the Hilscher EtherNet/IP Stack 30/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

2.8.3 Supported Services

2.8.3.1 Common services coming from the EtherNet/IP network or host
application

Service
Code

Name

Addressing the object’s

Description Class
Level

Instance
Level

0x0E Get Attribute Single Returns value of attribute

0x10 Set Attribute Single Modifies value of attribute
Table 32: Quality of Service Object - Common Services

2.8.3.2 Hilscher specific services coming from the host application

Service
Code

Name

Addressing the object’s

Description Class
Level

Instance
Level

0xFF33 Get Attribute Option Returns options of an attribute

0xFF34 Set Attribute Option Modifies options of an attribute
Table 33: Quality of Service Object - Hilscher Specific Service

Available CIP Classes in the Hilscher EtherNet/IP Stack 31/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

2.9 TCP/IP Interface Object (Class Code: 0xF5)
The TCP/IP Interface Object provides the mechanism to configure a device’s TCP/IP network
interface. Examples of configurable items include the device’s IP Address, Network Mask, and
Gateway Address.

The EtherNet/IP Adapter stack supports exactly one instance of the TCP/IP Interface Object.

2.9.1 Class Attributes

Attr
ID

Name

Access

Description Default Value
Supported
by default from

Network
from
Host

1 Revision Get Set Revision of this object (4)

2 Max. Instance Get Set
Maximum instance number of an
object currently created in this
class level of the device

(1)

3
Number of
Instances Get Set

The number of Instances
currently created in this class (1)

6
Maximum ID

Number Class
Attributes

Get Set

The attribute ID number of the
last class attribute of the class
definition implemented in the
device.

(7)

7

Maximum ID

Number
Instance

Attributes

Get Set

The attribute ID number of the
last instance attribute of the class
definition implemented in the
device.

(13)

Table 34: TCP/IP Interface Object - Class Attributes

2.9.2 Instance Attributes

Attr
ID

Name

Access

Description Default Value
Supported
by default from

Network
from
Host

1 Status Get Set Interface status

2
Configuration

Capability
Get Set Interface capability flags (0x95)

3
Configuration

Control
Set Set Interface control flags (0)

4

Physical Link

Object
Get Get Path to physical link object

(0x20 0xF6 0x24
0x01)

5
Interface

Configuration
Set Set

Interface Configuration (IP
address, subnet mask, gateway
address etc.)

(0)

6 Host Name Set Set

The Host Name attribute
contains the device’s host name,
which can be used for
informational purposes.

(“”)

7 Safety
Network

Get Set
See CIP Safety Specification,

Volume 5, Chapter 3
(0)

Available CIP Classes in the Hilscher EtherNet/IP Stack 32/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Attr
ID

Name

Access

Description Default Value
Supported
by default from

Network
from
Host

Number

8 TTL Value Set Set
TTL value for EtherNet/IP
multicast packets

(1)

9 Mcast Config Set Set
IP multicast address

configuration
(0)

10 SelectAcd Set Set Activates the use of ACD (1)

11
LastConflictD
etected

Set Set
Structure containing information
related to the last conflict
detected

(0)

12
EtherNet/IP

Quick
Connect

None None
Enable/Disable of Quick Connect
feature

(0)

13
Encapsulation
Inactivity
Timeout

Set Set
Number of seconds till TCP
connection is closed on
encapsulation inactivity

(120)

Table 35: TCP/IP Interface Object - Instance Attributes

2.9.3 Supported Services

2.9.3.1 Common services coming from the EtherNet/IP network or host
application

Service
Code

Name Addressing the object’s Description

Class
Level

Instance
Level

0x01 Get Attribute All

Returns content of instance or class
attributes

0x0E Get Attribute Single Returns value of attribute

0x10 Set Attribute Single Modifies value of attribute
Table 36: TCP/IP Interface Object - Common Services

2.9.3.2 Hilscher specific services coming from the host application

Service
Code

Name

Addressing the object’s

Description Class
Level

Instance
Level

0xF501 Get Multicast Get next multicast address

0xFF32 Reset Object Reset object to default values

0xFF33 Get Attribute Option Returns options of an attribute

0xFF34 Set Attribute Option Modifies options of an attribute
Table 37: TCP/IP Interface Object - Hilscher Specific Services

Available CIP Classes in the Hilscher EtherNet/IP Stack 33/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

2.10 Ethernet Link Object (Class Code: 0xF6)
The Ethernet Link Object maintains link-specific status information for the Ethernet
communications interface. If the device is a multi-port device, it holds more than one instance of
this object. Usually, when using the 2-port switch, instance 1 is assigned to Ethernet port 0 and
instance 2 is assigned to Ethernet port 1.

2.10.1 Class Attributes

Attr
ID

Name

Access

Description
Default
Value

Supported
by default from

Network
from
Host

1 Revision Get Set Revision of this object (4)

2 Max. Instance Get Set
Maximum instance number of an object
currently created in this class level of the
device

(2)

3
Number of
Instances Get Set

The number of Instances currently
created in this class (2)

6
Maximum ID

Number Class
Attributes

Get Set
The attribute ID number of the last class
attribute of the class definition
implemented in the device.

(7)

7

Maximum ID

Number
Instance

Attributes

Get Set
The attribute ID number of the last
instance attribute of the class definition
implemented in the device.

(11)

Table 38: Ethernet Link Object - Class Attributes

2.10.2 Instance Attributes

Attr
ID

Name

Access

Description
Default
Value

Support
ed by

default
from

Network
from
Host

1
Interface
Speed

Get Get
Interface speed currently

in use
(100)

2
Interface
Flags

Get Get Interface status flags (0x20)

3
Physical
Address

Get Set MAC layer address

4
Interface
Counters

Get Set Interface specific counters

5
Media
Counters

Get Set Media specific counters

6
Interface
Control

Set Set Configuration for physical interface (0)

7 Interface Type Get Set Type of interface: twisted pair, fiber (0x02)

8
Interface
State

Get Set Current state of interface (0)

9 Admin State Set Set
Administrative state:

enable, disable
(enable)

Available CIP Classes in the Hilscher EtherNet/IP Stack 34/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Attr
ID

Name

Access

Description
Default
Value

Support
ed by

default
from

Network
from
Host

10
Interface
Label Get Set Human readable identification

(“port1”,”po
rt2”)

11
Interface
Capability

Get Set Indication of capabilities of the interface

10 / HD,
10 / FD,
100 / HD
100 / FD

300 MDIX Set Set
MDIX configuration

MDI, MDIX, autoMDI
(autoMDI)

Table 39: Ethernet Link Object - Instance Attributes

2.10.3 Supported Services

2.10.3.1 Common services coming from the EtherNet/IP network or host
application

Service
Code

Name Addressing the object’s Description

Class
Level

Instance
Level

0x01 Get Attribute All

Returns content of instance or class
attributes

0x0E Get Attribute Single Returns value of attribute

0x10 Set Attribute Single Modifies value of attribute
Table 40: Ethernet Link Object - Common Services

2.10.3.2 Class-Specific services coming from the EtherNet/IP network or host
application

Service
Code

Name Addressing the object’s Description

Class
Level

Instance
Level

0x4C Get and Clear
Gets and then clears the specified attribute
(Interface Counters and Media Counters).

Table 41: Ethernet Link Object – Class-Specific Services

2.10.3.3 Hilscher specific services coming from the host application

Available CIP Classes in the Hilscher EtherNet/IP Stack 35/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Service
Code

Name

Addressing the object’s

Description Class
Level

Instance
Level

0xFF33 Get Attribute Option Returns options of an attribute

0xFF34 Set Attribute Option Modifies options of an attribute
Table 42: Ethernet Link Object - Hilscher Specific Services

Available CIP Classes in the Hilscher EtherNet/IP Stack 36/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

2.11 Predefined Connection Object (Class Code: 0x401)
The Predefined Connection Object maintains the possible implicit connections.

This is a Hilscher specific CIP object.

2.11.1 Class Attributes

Attr
ID

Name

Access

Description
Default
Value

Supported
by default from

Network
from
Host

1 Revision Get Set Revision of this object (1)

2 Max. Instance Get Set
Maximum instance number of an object
currently created in this class level of the
device

()

3
Number of
Instances

Get Set
The number of Instances currently
created in this class

()

6
Maximum ID

Number Class
Attributes

Get Set
The attribute ID number of the last class
attribute of the class definition
implemented in the device.

(7)

7

Maximum ID

Number
Instance

Attributes

Get Set
The attribute ID number of the last
instance attribute of the class definition
implemented in the device.

()

Table 43: Predefined Connection Object - Class Attributes

2.11.2 Instance Attributes

Attr
ID

Name

Access

Description
Default
Value

Supported
by default from

Network
from
Host

1 State Get Get State of the connection
2 Count Get Get Number of connections
3 Configuration Get Get Connection configuration

Table 44: Predefined Connection Object - Instance Attributes

2.11.3 Supported Services

2.11.3.1 Common services coming from the EtherNet/IP network or host
application

Service
Code

Name Addressing the object’s Description

Class
Level

Instance
Level

0x08 Create Create new predefined connection instance

0x09 Delete Delete predefined connection instance

0x0E Get Attribute Single Returns value of attribute

Available CIP Classes in the Hilscher EtherNet/IP Stack 37/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Service
Code

Name Addressing the object’s Description

Class
Level

Instance
Level

0x10 Set Attribute Single Modifies value of attribute
Table 45: Predefined Connection Object - Common Services

2.11.3.2 Hilscher specific services coming from the host application

Service
Code

Name

Addressing the object’s

Description Class
Level

Instance
Level

0xFF01 x Open Connection
Checks if connection is allowed and
reserves requested resources

0xFF02 x Close Connection Free resources needed for the connection

0xFF32 Reset Object Reset object to default values

0xFF33 Get Attribute Option Returns options of an attribute

0xFF34 Set Attribute Option Modifies options of an attribute
Table 46: Predefined Connection Object - Hilscher Specific Services

Available CIP Classes in the Hilscher EtherNet/IP Stack 38/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

2.12 IO Mapping Object (Class Code: 0x402)
The IO Mapping Object maintains the assignment of process data. It is used to map the I/O area of
dual port memory to specific assemblies.

This is a Hilscher specific CIP object.

2.12.1 Class Attributes

Attr
ID

Name

Access

Description
Default
Value

Supported
by default from

Network
from
Host

1 Revision Get Set Revision of this object (1)

2 Max. Instance Get Set
Maximum instance number of an object
currently created in this class level of the
device

()

3
Number of
Instances

Get Set
The number of Instances currently
created in this class

()

6
Maximum ID

Number Class
Attributes

Get Set
The attribute ID number of the last class
attribute of the class definition
implemented in the device.

(7)

7

Maximum ID

Number
Instance

Attributes

Get Set
The attribute ID number of the last
instance attribute of the class definition
implemented in the device.

(3)

Table 47: IO Mapping Object - Class Attributes

2.12.2 Instance Attributes

Attr
ID

Name

Access

Description
Default
Value

Supported
by default from

Network
from
Host

1 Status Get Get Status of I/O data
2 Length Get Get Length of I/O data
3 Data Get Get I/O data

Table 48: IO Mapping Object - Instance Attributes

2.12.3 Supported Services

2.12.3.1 Common services coming from the EtherNet/IP network or host
application

Service
Code

Name Addressing the object’s Description

Class
Level

Instance
Level

0x0E Get Attribute Single Returns value of attribute

0x10 Set Attribute Single Modifies value of attribute
Table 49: IO Mapping Object - Common Services

Available CIP Classes in the Hilscher EtherNet/IP Stack 39/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

2.12.3.2 Hilscher specific services coming from the host application

Service
Code

Name

Addressing the object’s

Description Class
Level

Instance
Level

0xFF01 Create Member Creates a new I/O Mapping entry

0xFF02 Delete Member Deletes I/O Mapping entry

0xFF32 Reset Object Reset object to default values

0xFF33 Get Attribute Option Returns options of an attribute

0xFF34 Set Attribute Option Modifies options of an attribute
Table 50: IO Mapping Object - Hilscher Specific Services

Getting Started/ Configuration 40/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

3 Getting Started/ Configuration
3.1 Configuration Procedures
The following ways are available to configure the EtherNet/IP Adapter:

 Using the Configuration Tool SYCON.net

 By netX configuration and diagnostic utility

 By configuration packets

3.1.1 Using the Configuration Tool SYCON.net
The easiest way to configure the EtherNet/IP Adapter is using Hilscher’s configuration tool
SYCON.net. This tool is described in a separate documentation.

3.1.2 Using the netX configuration and diagnostic utility
The configuration of the EtherNet/IP Adapter using Hilscher’s netX configuration and diagnostic
utility, is described in a separate documentation.

3.1.3 Using the Packet API of the EtherNet/IP Protocol Stack
Depending of the interface the host application has to the EtherNet/IP stack, there are different
possibilities of how configuration can be performed.

For more information how to accomplish this, please see section 3.2

3.2 Configuration Using the Packet API
In section 2 “Available CIP Classes in the Hilscher EtherNet/IP Stack” the default Hilscher CIP
Object Model is displayed. This section explains how these objects can be configured using the
Packet API of the EtherNet/IP stack.

There are some configuration sets available to configure the device. The Configuration Set must
be chosen depending on the requirements for the device you want to develop and on the CIP
Object Model you want the device to have.

Table 51: Configuration Sets shows the available sets and describes the general functionalities
that come with the corresponding set.

Getting Started/ Configuration 41/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Scenario Name of
Configuration Set

Description

Loadable
Firmware

Basic

This set provides a basic functionality
 Cyclic communication/ implicit messaging (Transport class1 and Class0).

Two assembly instances are available, one for input and one for output
data.

 Acyclic access (explicit messaging) to all predefined Hilscher CIP objects
(unconnected/connected).

 Support of Device Level Ring (DLR) protocol.
 Support of ACD (Address Conflict Detection)
 Support of Quick Connect
 Storage of changed Attributes

Using this configuration the device’s CIP object model will look like the one that
is illustrated in Figure 1.
Note:
If your application/device needs a special functionality that is not covered by the
basic Packet Set, please use the Extended Packet Set described below.

Extended

Using this Configuration Set, the host application is free to design the device’s
CIP object model in all aspects. In addition to the functionalities that come with
the Basic Configuration Set, this set provides the following:
 Up to 32 assembly instances possible.
 Additional configuration assembly possible (necessary if the device needs

configuration parameters from the Scanner/Master/PLC before going into
cyclic communication).

 Use additional CIP objects (that might be necessary when using a special
CIP Profile). These objects are also accessible via acyclic/explicit
messages.

This Configuration Set can, of course, also be used if only a basic configuration
is desired.
Note:
All changes of any non volatile object attribute has to be handled from the host
application.

Table 51: Configuration Sets

Getting Started/ Configuration 42/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

3.2.1 Basic Configuration Set

3.2.1.1 Configuration Packets

To configure the EtherNet/IP Stack’s default CIP objects the following packets are necessary:

No. of section Packet Name Command
Code
(REQ/CNF)

Page

4.1.1 Configure the Device with Configuration Parameter 0x3612/
0x3613

93

 RCX_REGISTER_APP_REQ – Register the Application at the stack in order
to receive indications

(see [1] “DPM Manual” for more information)

0x2F10/
0x2F11

 RCX_CHANNEL_INIT_REQ – Perform channel initialization

(see [1] “DPM Manual” for more information)

0x2F80/
0x2F81

Table 52: Basic Configuration Set - Configuration Packets

3.2.1.2 Optional Request Packets

In addition to the request packets related to configuration, there are some more request packets
the application can use. It is recommended to use Application controlled start at ulSystemFlags
of the EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ when optional packets are used for
configuration

No. of
section

Packet Name

4.1.2 Set Parameter Flags

4.3.1 Get Module Status/ Network Status

4.1.4 Register an additional Object Class at the Message Router

4.1.5 Register a new Assembly Instance

4.1.7 Register Service

4.1.8 Set Parameter

Table 53: Additional Request Packets Using the Basic Configuration Set

Getting Started/ Configuration 43/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

3.2.1.3 Indication Packets the Host Application Needs to Handle

In addition to the request packets, there are some indication packets the application needs to
handle:

No. of section Packet Name Command
code
(IND/RES)

Page

4.2.1 Indication of a Reset Request from the network 0x1A24/
0x1A25

94

4.2.2 Connection State Change Indication 0x1A2E/
0x1A2F

98

4.2.3 Indication of acyclic Data Transfer 0x1A3E/
0x1A3F

107

4.2.4 CIP Object Change Indication 0x1AFA/
0x1AFB

120

Table 54: Indication Packets Using the Basic Configuration Set

Getting Started/ Configuration 44/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

3.2.1.4 Configuration Sequence

The packets of Packet Set “Basic” should be sent in the order that is illustrated in Figure 2.

Figure 2: Configuration Sequence Using the Basic Configuration Set

Getting Started/ Configuration 45/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

3.2.2 Extended Configuration Set

3.2.2.1 Configuration Packets

To configure the EtherNet/IP Stack, the following packets are necessary:

No. of section Packet Name Command
Code
(REQ/CNF)

Page

4.1.9 CIP Service Request 0x1AF8/
0x1AF9

82

4.1.5 Register a new Assembly Instance 0x1A0C/
0x1A0D

68

4.1.3 Finish configuration of CIP Objects 0x3614 /
0x3615

63

 RCX_REGISTER_APP_REQ – Register the Application at the stack in order
to receive indications

(see [1] “DPM Manual” for more information)

0x2F10/
0x2F11

Table 55: Extended Configuration Set - Configuration Packets

3.2.2.2 Optional Request Packets

In addition to the request packets related to configuration, there are some more request packets
the application can use:

No. of section Packet Name Command
code
(REQ/CNF)

Page

4.1.2 Set Parameter Flags 0x360A/
0x360B

60

4.3.1 Get Module Status/ Network Status 0x360E/
0x360F

141

4.1.4 Register an additional Object Class at the Message Router 0x1A02/
0x1A03

65

4.1.6 Set the Device’s Identity Information 0x1A16/
0x1A17

74

4.1.7 Register Service 0x1A44/
0x1A45

79

Table 56: Additional Request Packets Using the Basic Configuration Set

Getting Started/ Configuration 46/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

3.2.2.3 Indication Packets the Host Application Needs to Handle

In addition to the request packets, there are some indication packets the application needs to
handle:

No. of section Packet Name Command
code
(IND/RES)

Page

4.2.1 Indication of a Reset Request from the network 0x1A24/
0x1A25

94

4.2.2 Connection State Change Indication 0x1A2E/
0x1A2F

98

4.2.3 Indication of acyclic Data Transfer 0x1A3E/
0x1A3F

107

4.2.4 CIP Object Change Indication 0x1AFA/
0x1AFB

120

Table 57: Indication Packets Using the Extended Packet Set

3.2.2.4 Configuration Sequence

The following Figure 3 illustrates an example packet sequence using the Extended Packet Set.
Using the shown sequence and packets will basically give you a configuration that is equal to the
configuration you get when using the Basic Packet Set. Of course, you can use additional packets
to further extend your Device’s object model or activate additional functionalities.

Getting Started/ Configuration 47/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Figure 3: Configuration Sequence Using the Extended Packet Set

Getting Started/ Configuration 48/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

3.3 Example Configuration Process
For configuration examples please refer to the example code SetConfigExample and
ExtendedConfigExample.

3.3.1 Handling of Configuration Data Changes
In an EtherNet/IP environment it is possible that the values of CIP Objects Attributes within the
device can be change via the network by external components like a configuration tool or an
EtherNet/IP Scanner (Master).

Some CIP Object Attributes are defined to be “non-volatile”, which means non-volatile storage is
required for these attributes. This way when setting the attribute its value is maintained through
power cycles.

An example for such a non-volatile attribute is the attribute #5 of the TCP/IP Interface Object (class
ID 0xF5). This attribute holds the IP Address configuration of the device. Storing this attribute into
non-volatile memory makes it possible that the device does not lose its IP address after a power
cycle.

Figure 4 illustrates the CIP Objects and attributes that are non-volatile and need to be handled by
the host application. Every time such an attribute is written via the network an indication is sent to
the host application. This indication notifies the host application about the change and provides the
new attribute value (see packet command “CIP Object Change Indication”).

Figure 4: Non-Volatile CIP Object Attributes

The Application Interface 49/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

4 The Application Interface
This chapter defines the application interface of the Ethernet/IP Adapter.

4.1 Configuring the EtherNet/IP Adapter
This chapter explains the packets used for configuring the EtherNet/IP Adapter using the packet
interface. Details about the configuration sequence are explained at chapter 3.2

The following packets are available for the configuration:

Overview over the configuration packets of the EtherNet/IP Adapter

No. of
section

Packet Command
code
(REQ/CNF or
IND/RES)

Page

4.1.1 EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ 0x00003612 50

4.1.2 EIP_APS_SET_PARAMETER_REQ 0x0000360A 60

4.1.3 EIP_APS_CONFIG_DONE_REQ 0x00003614 143

4.1.4 EIP_OBJECT_MR_REGISTER_REQ 0x00001A02 65

4.1.5 EIP_OBJECT_AS_REGISTER_REQ 0x00001A0C 68

4.1.6 EIP_OBJECT_ID_SETDEVICEINFO_REQ 0x00001A16 74

4.1.7 EIP_OBJECT_REGISTER_SERVICE_REQ 0x00001A44 79

4.1.8 EIP_OBJECT_CIP_SERVICE_REQ 0x00001AF8 82

4.1.10 RCX_SET_WATCHDOG_TIME_REQ 0x00002F04 92

4.1.11 RCX_REGISTER_APP_REQ 0x00002F10 92

4.1.12 RCX_START_STOP_COMM_REQ 0x00002F30 92

4.1.13 RCX_CHANNEL_INIT_REQ 0x00002F80 92

4.1.14 RCX_SET_FW_PARAMETER_REQ 0x00002F86 144
Table 58: Overview over the configuration packets of the EtherNet/IP Adapter

The Application Interface 50/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

4.1.1 Configure the Device with Configuration Parameter

Note:
This packet replaces the packet EIP_APS_SET_CONFIGURATION_REQ(cmd:0x3608).
For compatibility reasons this packet is still supported. However, for new developments
only the packet EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ (cmd: 0x3612)
shall be used.

This service can be used by the host application in order to configure the device with configuration
parameters. This packet is part of the basic packet set and provides a basic configuration to all
default CIP objects within the stack.

Using this configuration method the stack automatically creates two assembly instances that can
be used implicit/cyclic communication. The I/O data of these instances will start at offset 0 at the
dual port memory (relative offset to the input and output areas of the DPM).

Note: If you set usVendId, usProductType and usProductCode to zero, Hilscher’s
firmware standard values will be applied for the according variables.

The following rules apply for the behavior of the EtherNet/IP Adapter Stack when receiving a set
configuration command:

 The configuration data is checked for consistency and integrity.

 In case of failure no data is accepted.

 In case of success the configuration parameters are stored internally (within the RAM).

 The parameterized data will be activated only after a channel init
(RCX_CHANNEL_INIT_REQ).

 This packet does not perform any registration at the stack automatically. Registering must be
performed with a separate packet such as the registration packet described in the netX Dual-
Port-Memory Manual (RCX_REGISTER_APP_REQ, code 0x2F10).

 This request will be denied if the “configuration locked” flag is set in the DPM.

Figure 5: Sequence Diagram for the EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ/CNF Packet

The Application Interface 51/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Structure Reference
typedef struct EIP_DPMINTF_QOS_CONFIG_Ttag
{
 TLR_UINT32 ulQoSFlags;
 TLR_UINT8 bTag802Enable;
 TLR_UINT8 bDSCP_PTP_Event;
 TLR_UINT8 bDSCP_PTP_General;
 TLR_UINT8 bDSCP_Urgent;
 TLR_UINT8 bDSCP_Scheduled;
 TLR_UINT8 bDSCP_High;
 TLR_UINT8 bDSCP_Low;
 TLR_UINT8 bDSCP_Explicit;
} EIP_DPMINTF_QOS_CONFIG_T;

typedef struct EIP_DPMINTF_TI_ACD_LAST_CONFLICT_Ttag
{
 TLR_UINT8 bAcdActivity; /*!< State of ACD activity when last
 conflict detected */

 TLR_UINT8 abRemoteMac[6]; /*!< MAC address of remote node from
 the ARP PDU in which a conflict was
 detected */

 TLR_UINT8 abArpPdu[28]; /*!< Copy of the raw ARP PDU in which
 a conflict was detected. */
} EIP_DPMINTF_TI_ACD_LAST_CONFLICT_T;

typedef struct EIP_DPMINTF_TI_MCAST_CONFIG_Ttag
{
 TLR_UINT8 bAllocControl; /* Multicast address allocation control
 word. Determines how addresses are
 allocated. */
 TLR_UINT8 bReserved;
 TLR_UINT16 usNumMCast; /* Number of IP multicast addresses
 to allocate for EtherNet/IP */
 TLR_UINT32 ulMcastStartAddr; /* Starting multicast address from which */
} EIP_DPMINTF_TI_MCAST_CONFIG_T;

typedef struct EIP_APS_CONFIGURATION_PARAMETER_SET_V3_Ttag
{
 TLR_UINT32 ulSystemFlags;
 TLR_UINT32 ulWdgTime;
 TLR_UINT32 ulInputLen;
 TLR_UINT32 ulOutputLen;
 TLR_UINT32 ulTcpFlag;
 TLR_UINT32 ulIpAddr;
 TLR_UINT32 ulNetMask;
 TLR_UINT32 ulGateway;
 TLR_UINT16 usVendId;
 TLR_UINT16 usProductType;
 TLR_UINT16 usProductCode;
 TLR_UINT32 ulSerialNumber;
 TLR_UINT8 bMinorRev;
 TLR_UINT8 bMajorRev;
 TLR_UINT8 abDeviceName[32];
 TLR_UINT32 ulInputAssInstance;
 TLR_UINT32 ulInputAssFlags;
 TLR_UINT32 ulOutputAssInstance;
 TLR_UINT32 ulOutputAssFlags;
 EIP_DPMINTF_QOS_CONFIG_T tQoS_Config;
 TLR_UINT32 ulNameServer;
 TLR_UINT32 ulNameServer_2;
 TLR_UINT8 abDomainName[48 + 2];
 TLR_UINT8 abHostName[64+2];
 TLR_UINT8 bSelectAcd;
 EIP_DPMINTF_TI_ACD_LAST_CONFLICT_T tLastConflictDetected;
 TLR_UINT8 bQuickConnectFlags;
 TLR_UINT8 abAdminState[2];
 TLR_UINT8 bTTLValue;
 EIP_DPMINTF_TI_MCAST_CONFIG_T tMCastConfig;
 TLR_UINT16 usEncapInactivityTimer;
} EIP_APS_CONFIGURATION_PARAMETER_SET_V3_T;

typedef struct EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ_Ttag
{
 TLR_UINT32 ulParameterVersion; /*!< Version related to the following configuration union */

 union

The Application Interface 52/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

 {
 EIP_APS_CONFIGURATION_PARAMETER_SET_V1_T tV1;
 EIP_APS_CONFIGURATION_PARAMETER_SET_V2_T tV2;
 EIP_APS_CONFIGURATION_PARAMETER_SET_V3_T tV3;
 } unConfig;

} EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ_T;

typedef struct EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_REQ_Ttag
{
 TLR_PACKET_HEADER_T tHead;
 EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ_T tData;
}EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_REQ_T;

Packet Description

structure EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_REQ_T Type: Request

Variable Type Value / Range Description

tHead - Structure TLR_PACKET_HEADER_T
ulDest UINT32 0x20/

DPMINTF_QUE
Destination Queue-Handle

ulSrc UINT32 0 ... 232-1 Source Queue-Handle
ulDestId UINT32 See rules in

section 3.2.1
Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.
Set to 0 for the Initialization Packet

ulSrcId UINT32 See rules in
section 3.2.1

Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 271 Packet Data Length in bytes
ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by

the Source Process of the Packet
ulSta UINT32 See chapter Status/Error Codes Overview
ulCmd UINT32 0x3612 EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ -

Command
ulExt UINT32 0 Extension not in use, set to zero for compatibility

reasons
ulRout UINT32 x Routing, do not touch

tData - Structure EIP_APS_SET_CONFIGURATION_ PARAMETERS_REQ_T
ulParameterVersion UINT32 3 (latest

version)
Version of the following parameter structure

unConfig.tV3 UNION For parameter set version 3 the structure in Table 60
must be used.

Table 59: EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_REQ – Set Configuration Parameters Request

The Application Interface 53/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Structure EIP_APS_CONFIGURATION_PARAMETER_SET_V3_T
ulSystemFlags UINT32 (Bit

field)
0, 1 System flags area

The start of the device can be performed either
application controlled or automatically:

Automatic (0): Network connections are opened
automatically without taking care of the state of the
host application. Communication with a controller after
a device start is allowed without BUS_ON flag, but the
communication will be interrupted if the BUS_ON flag
changes state to 0

Application controlled (1): The channel firmware is
forced to wait for the host application to wait for the
Application Ready flag in the communication change of
state register (see section 3.2.5.1 of reference [1]).
Communication with controller is allowed only with the
BUS_ON flag.

For more information concerning this topic see section
4.4.1 “Controlled or Automatic Start” of reference [1].

ulWdgTime UINT32 0, 20..65535 Watchdog time (in milliseconds).
0 = Watchdog timer has been switched off
Default value: 1000

ulInputLen UINT32 0..504
Default: 16

Length of Input data (OT direction, data the device
receives from a Scanner)

ulOutputLen UINT32 0..504
Default: 16

Length of Output data (TO direction, data the device
sends to a Scanner)

ulTcpFlag UINT32 Default value:
0x00000410

The TCP flags configure the TCP stack behavior
related the IP Address assignment (STATIC, BOOTP,
DHCP) and the Ethernet port settings (such as Auto-
Neg, 100/10MBits, Full/Half Duplex).
For more information see Table 61 “Meaning of
Contents of Flags Area”.
Default value:
0x00000410 (both ports set to DHCP + Autoneg)

ulIPAddr UINT32 All valid IP-
addresses
Default: 0.0.0.0

IP Address
See detailed explanation in the corresponding TCP/IP
Manual (reference [2])

ulNetMask UINT32 All valid masks
Default: 0.0.0.0

Network Mask
See detailed explanation in the corresponding TCP/IP
Manual (reference [2])

ulGateway UINT32 All valid IP-
addresses
Default: 0.0.0.0

Gateway Address
See detailed explanation in the corresponding TCP/IP
Manual (reference [2])

usVendorID UINT16 0..65535 Vendor identification:
This is an identification number for the manufacturer of
an EtherNet/IP device.
Vendor IDs are managed by ODVA (see
www.odva.org).
The value zero is not valid.
Default value: 283 (Hilscher)

http://www.odva.org/

The Application Interface 54/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

usProductType UINT16 0..65535 CIP Device Type (former “Product Type”)
The list of device types is managed by ODVA (see
www.odva.org). It is used to identify the device profile
that a particular product is using. Device profiles define
minimum requirements a device must implement as
well as common options.

Publicly defined: 0x00 - 0x64
Vendor specific: 0x64 - 0xC7
Reserved by CIP: 0xC8 - 0xFF
Publicly defined: 0x100 - 0x2FF
Vendor specific: 0x300 - 0x4FF
Reserved by CIP: 0x500 - 0xFFFF

Default: 0x0C (Communication Device)
The value 0 is not a valid Product Type. However,
when using value 0 here, the stack automatically
chooses the default Product Type (0x0C).

usProductCode UINT16 1..65535 Product code
The vendor assigned Product Code identifies a
particular product within a device type. Each vendor
assigns this code to each of its products. The Product
Code typically maps to one or more catalog/model
numbers. Products shall have different codes if their
configuration and/or runtime options are different. Such
devices present a different logical view to the network.
On the other hand for example, two products that are
the same except for their color or mounting feet are the
same logically and may share the same product code.
The value zero is not valid.
The value 0 is not a valid Product Code. However,
when using value 0 here, the stack automatically
chooses the default Product Code dependent on the
chip type (netX50/100 etc.) that is used.

ulSerialNumber UINT32 0..
0xFFFFFFFF

Serial Number of the device
This parameter is a number used in conjunction with
the Vendor ID to form a unique identifier for each
device on any CIP network. Each vendor is
responsible for guaranteeing the uniqueness of the
serial number across all of its devices.
Usually, this number will be set automatically by the
firmware, if a security memory is available. In this case
leave this parameter at value 0.

bMinorRev UINT8 1..255 Minor revision

bMajorRev UINT8 1..127 Major revision

abDeviceName UINT8[32] Device Name
This text string should represent a short description of
the product/product family represented by the product
code. The same product code may have a variety of
product name strings.
Byte 0 indicates the length of the name. Bytes 1 -30
contain the characters of the device name)
Example: “Test Name”
abDeviceName[0] = 9
abDeviceName[1..9] = “Test Name”

ulInputAssInstance UINT32 1- 0x8000FFFF
Default: 100

Instance number of input assembly (OT direction)
See Table 72 “Assembly Instance Number Ranges”

http://www.odva.org/

The Application Interface 55/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

ulInputAssFlags UINT8 Bit mask Input assembly (OT) flags
See Table 62 “Input Assembly Flags/ Output Assembly
Flags”

ulOutputAssInstance UINT32 1- 0x8000FFFF
Default: 101

Instance number of output assembly (TO direction)
See Table 72 “Assembly Instance Number Ranges”

ulOutputAssFlags UINT8 Bit mask Output assembly (TO) flags
See Table 62 “Input Assembly Flags/ Output Assembly
Flags”

tQoS_Config EIP_DPMINTF_
QOS_CONFIG
_T

 Quality of Service configuration
This parameter set configures the Quality of Service
Object (CIP ID 0x48)

ulNameServer UINT32 See section
0

Name Server 1
This parameter configures the NameServer element of
attribute 5 of the TCP/IP Interface Object.
See section 2.9 “TCP/IP Interface Object (Class Code:
0xF5)“ for more information.
Default: 0.0.0.0

ulNameServer_2 UINT32 See section
0

Name Server 2
This parameter configures the NameServer2 element
of attribute 5 of the TCP/IP Interface Object.
See section 2.9 “TCP/IP Interface Object (Class Code:
0xF5)“ for more information.
Default: 0.0.0.0

abDomainName[48 +
2]

UINT8[] See section
0

Domain Name
This parameter configures the DomainName element
of attribute 5 of the TCP/IP Interface Object.
See section 2.9 “TCP/IP Interface Object (Class Code:
0xF5)“ for more information.

abHostName[64+2] UINT8[] See section
0

Host Name
This parameter configures attribute 6 of the TCP/IP
Interface Object.
See section 2.9 “TCP/IP Interface Object (Class Code:
0xF5)“ for more information.

bSelectAcd UINT8 See section
0

Select ACD
This parameter configures attribute 7 of the TCP/IP
Interface Object.
See section 2.9 “TCP/IP Interface Object (Class Code:
0xF5)“ for more information.

tLastConflictDetect
ed

EIP_DPMINTF_
TI_ACD_LAST_
CONFLICT_T

See section
0

Last Detected Conflict
This parameter configures attribute 11 of the TCP/IP
Interface Object.
See section 2.9 “TCP/IP Interface Object (Class Code:
0xF5)“ for more information.

The Application Interface 56/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

bQuickConnectFlags UINT8 0,1,3
Default: All zero

Quick Connect Flags
This parameter enables/ disables the Quick Connect
functionality within the stack. This affects the TCP
Interface Object (0xF5) attribute 12. See section 2.9
“TCP/IP Interface Object (Class Code: 0xF5)“ for more
information.

Bit 0 (EIP_OBJECT_QC_FLAGS_ACTIVATE_ATTRIBUTE):
If set (1), the Quick Connect Attribute 12 of the TCP
Interface Object (0xF5) is activated (i.e. it is present
and accessible via CIP services). The actual value of
attribute 12 can be configured with bit 1.
Bit 1 (EIP_OBJECT_QC_FLAGS_ENABLE_QC):
This bit configures the actual value of attribute 12. If
set, attribute 12 has the value 1 (Quick Connect
enabled). If not set, Quick connect is disabled. This bit
will be evaluated only if bit 0 is set (1).

abAdminState[2] UINT8 1, 2 Admin State
This parameter configures attribute 9 of the Ethernet
Link Object.
Default: Both entries 0x01 (enabled)
See section 2.10 “Ethernet Link Object (Class Code:
0xF6)“ for more information.

bTTLValue UINT8 1-255
Default: 1

This parameter corresponds to attribute 8 of the
TCP/IP Interface Object (CIP Id 0xF5).
The TTL value attribute shall use for the IP header
Time-to-Live when sending EtherNet/IP packets via
multicast. This attribute shall be stored in non-volatile
memory.

tMCastConfig EIP_DPMINTF_
TI_MCAST_CO
NFIG_T

0-3600
Default: 120
seconds

This parameter corresponds to attribute 9 of the
TCP/IP Interface Object (CIP Id 0xF5). The MCast
Config set the used multicast range for multicast
connections. This attribute shall be stored in non-
volatile memory.

usEncapInactivityTi
mer

UINT16 0-3600
Default: 120
seconds

This parameter corresponds to attribute 13 of the
TCP/IP Interface Object (CIP Id 0xF5). The
Encapsulation Inactivity Timeout is used to close
sockets when the defined time (seconds) elapsed
without Encapsulation activity. Default: 120
This attribute shall be stored in non-volatile memory.

Table 60: EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_REQ – Configuration Parameter Set V3

The Application Interface 57/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The following flags are available in the flags area:
Bits Description

31 ...
29

Reserved for future use

28 Speed Selection (Ethernet Port 2):

Only evaluated if bit 15 is set. Behaves the same as bit 12.

27 Duplex Operation (Ethernet Port 2):

Only evaluated if bit 15 is set. Behaves the same as bit 11.

26 Auto-Negotiation (Ethernet Port 2):

Only evaluated if bit 15 is set. Behaves the same as bit 10.

25 …
16

Reserved for future use

15 Extended Flag:

This flag can be used if the device has two Ethernet ports. In that case the two ports can be configured
separately regarding “Speed Selection”, “Duplex Operation” and “Auto-Negotiation”

If not set (0), both ports are configured with the same parameters using the bits 10 to 12.

If set (1), port 1 is configured using bits 10 to 12. Port 2 is configured using the bits 26 to 28.

13 ..
14

Reserved for future use

12 Speed Selection: (Ethernet Port 1)
If set (1), the device will operate at 100 MBit/s, otherwise at 10 MBit/s.

This parameter will only be evaluated, if auto-negotiation (bit 10) is not set (0).

11 Duplex Operation: (Ethernet Port 1)
If set (1), full-duplex operation will be enabled, otherwise the device will operate in half duplex mode

This parameter will only be evaluated, if auto-negotiation (bit 10) is not set (0).

10 Auto-Negotiation: (Ethernet Port 1)
If set (1), the device will negotiate speed and duplex with connected link partner.

If set (1), this flag overwrites Bit 11 and Bit 12 .

9 ... 5 Reserved for future use

4 Enable DHCP:
If set (1), the device tries to obtain its IP configuration from a DHCP server.

3 Enable BOOTP:
If set (1), the device tries to obtain its IP configuration from a BOOTP server.

2 Gateway available:
If set (1), the content of the ulGateway parameter will be evaluated.

If the flag is not set (0), ulGateway must be set to 0.0.0.0.

1 Netmask available:
If set (1), the content of the ulNetMask parameter will be evaluated. If the flag is not set the device will
assume to be an isolated host which is not connected to any network. The ulGateway parameter will be
ignored in this case.

0 IP address available:
If set (1), the content of the ulIpAddr parameter will be evaluated. In this case the parameter ulNetMask
must be a valid net mask.

Table 61: Meaning of Contents of Flags Area

The Application Interface 58/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The input assembly flags and the output assembly flags are defined as follows:

Flag Meaning

Bit 0 This flag is used internally and must be set to 0.

Bit 1 This flag is used internally and must be set to 0.

Bit 2 This flag is used internally and must be set to 0.

Bit 3 If set (1), the assembly instance’s real time format is modeless, i.e. it does not contain
run/idle information.

If not set (0), the assembly instance’s real time format is the 32-Bit Run/Idle header.

Bit 4 This flag is used internally and must be set to 0

Bit 5 This flag is used internally and must be set to 0

Bit 6 This flag decides whether the assembly data which is mapped into the DPM memory
area is cleared upon closing or timeout of the connection or whether the last
sent/received data is left unchanged in the memory.

If the bit is set (1) the data will be left unchanged.

Bit 7 This flag decides whether the assembly instance allows a connection to be established
with a smaller connection size than defined in ulInputLen/ulOutputLen or whether
only the exact match is accepted. If the bit is set (1), the connection size in a
ForwardOpen must directly correspond to ulInputLen/ulOutputLen.

Example:

1) ulInputLen = 16 (Bit 7 of ulInputAssFlags is not set (0))
 ulOutputLen = 32 (Bit 7 of ulOutputAssFlags is not set (0))
 A connection can be opened with smaller or matching I/O sizes,
 e.g. 8 for input and 20 for output.

2) ulInputLen = 6 (Bit 7 of ulInputAssFlags is set (1))
 ulOutputLen = 10 (Bit 7 of ulOutputAssFlags is set (1))
 A connection can only be opened with matching I/O sizes, 6 for
 input and 10 for output.

Table 62: Input Assembly Flags/ Output Assembly Flags

The Application Interface 59/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Structure Reference

typedef struct EIP_APS_SET_CONFIGURATION_PARAMETERS_CNF_Ttag
{
 TLR_UINT32 ulPacketVersion; /*!< Version related to the following union entry */

 union
 {
 EIP_APS_CONFIGURATION_PARAMETER_SET_V1_T tV1;
 EIP_APS_CONFIGURATION_PARAMETER_SET_V2_T tV2;
 EIP_APS_CONFIGURATION_PARAMETER_SET_V3_T tV3
 }unConfig;

} EIP_APS_SET_CONFIGURATION_PARAMETERS_CNF_T;

typedef struct EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_CNF_Ttag
{
 TLR_PACKET_HEADER_T tHead;
 EIP_APS_SET_CONFIGURATION_PARAMETERS_CNF_T tData;
} EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_CNF_T;

Packet Description

Structure EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_CNF_T Type: Confirmation

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T
ulDest UINT32 See rules in

section 3.2.1
Destination Queue Handle

ulSrc UINT32 See rules in
section 3.2.1

Source Queue Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination Queue Reference

ulSrcId UINT32 See rules in
section 3.2.1

Source Queue Reference

ulLen UINT32 Size from
request packet

Packet Data Length in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by the Source
Process of the Packet

ulSta UINT32 See chapter Status/Error Codes Overview
ulCmd UINT32 0x3613 EIP_APS_SET_CONFIGURATION_PARAMETERS_CNF - Command
ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 x Routing, do not touch

tData - Structure EIP_APS_SET_CONFIGURATION_ PARAMETERS_CNF_T
ulParameterV
ersion

UINT32 Version of the following parameter structure (from request packet)

unConfig UNION

 Configuration Set (from request packet)

Table 63: EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_CNF – Set Configuration Parameters Confirmation

The Application Interface 60/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

4.1.2 Set Parameter Flags
This packet can be sent by the host application to activate special functionalities or behaviors of the
AP-Task. The request packet therefore contains a flag field in which each bit stands for a specific
functionality.

Table 64 shows all available flags:
Bit Description

0 Flag IP_APS_PRM_SIGNAL_MS_NS_CHANGE (0x00000001)

If set (1), the host application will be notified whenever the network or module status changes. The module and
the network status are displayed by LEDs at EtherNet/IP devices (see section 6.1 “Module and Network
Status” for more information). The notification will be sent with the indication packet Link Status Change.
If not set (0) no notifications will be sent.

1..31 Reserved for future use.

Table 64: EIP_APS_SET_PARAMETER_REQ Flags

Figure 6 below displays a sequence diagram for the EIP_APS_SET_PARAMETER_REQ/CNF
packet.

Figure 6: Sequence diagram for the EIP_APS_SET_PARAMETER_REQ/CNF packet

Packet Structure Reference
#define EIP_APS_PRM_SIGNAL_MS_NS_CHANGE 0x00000001

typedef struct EIP_APS_SET_PARAMETER_REQ_Ttag
{
 TLR_UINT32 ulParameterFlags; /*!< Parameter flags \n
} EIP_APS_SET_PARAMETER_REQ_T;

#define EIP_APS_SET_PARAMETER_REQ_SIZE (sizeof(EIP_APS_SET_PARAMETER_REQ_T))

typedef struct EIP_APS_PACKET_SET_PARAMETER_REQ_Ttag
{
 TLR_PACKET_HEADER_T tHead;
 EIP_APS_SET_PARAMETER_REQ_T tData;
} EIP_APS_PACKET_SET_PARAMETER_REQ_T;

The Application Interface 61/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Description

structure EIP_APS_PACKET_SET_PARAMETER_REQ_T

Type: Request

Area Variable Type Value / Range Description

tHead structure TLR_PACKET_HEADER_T

ulDest UINT32 0x20/
DPMINTF_QUE

Destination Queue-Handle

ulSrc UINT32 0 ... 232-1 Source Queue-Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process. Set
to 0 for the Initialization Packet

ulSrcId UINT32 See rules in
section 3.2.1

Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 4 Packet Data Length in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by the
Source Process of the Packet

ulSta UINT32 See Packet Structure Reference

ulCmd UINT32 0x360A EIP_APS_SET_PARAMETER_REQ - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 x Routing, do not touch

tData structure EIP_APS_SET_PARAMETER_REQ_T

ulParameterFlags UINT32 See Table 64 for
possible values

Bit field

Table 65: EIP_APS_SET_PARAMETER_REQ – Set Parameter Flags Request

The Application Interface 62/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Structure Reference
#define EIP_APS_SET_PARAMETER_CNF_SIZE 0

typedef struct EIP_APS_PACKET_SET_PARAMETER_CNF_Ttag
{
 TLR_PACKET_HEADER_T tHead;
} EIP_APS_PACKET_SET_PARAMETER_CNF_T;

Packet Description

structure EIP_APS_PACKET_SET_PARAMETER_CNF_T

Type: Confirmation

Area Variable Type Value / Range Description

tHead structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination Queue-Handle

ulSrc UINT32 Source Queue-Handle

ulDestId UINT32 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process. Set
to 0 for the Initialization Packet

ulSrcId UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 0 Packet Data Length in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by the
Source Process of the Packet

ulSta UINT32 See Packet Structure Reference

ulCmd UINT32 0x360B EIP_APS_SET_PARAMETER_CNF - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 x Routing, do not touch

Table 66: EIP_APS_SET_PARAMETER_CNF – Confirmation to Set Parameter Flags Request

The Application Interface 63/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

4.1.3 Finish configuration of CIP Objects
The packet is used for the extended configuration

This packet can be used by the EtherNet/IP Adapter Application in order to signal that all CIP
objects are configured and the EtherNet/IP Adapter Stack shall start.

Figure 7: Sequence Diagram for the EIP_APS_CONFIG_DONE_REQ/CNF Packet

Packet Structure Reference
#define EIP_APS_CONFIG_DONE_REQ_SIZE 0

typedef struct EIP_APS_PACKET_CONFIG_DONE_REQ_Ttag
{
 TLR_PACKET_HEADER_T tHead;
} EIP_APS_PACKET_CONFIG_DONE_REQ_T;

Packet Description

structure EIP_APS_PACKET_CONFIG_DONE_REQ_T

Type: Request

Area Variable Type Value / Range Description

tHead structure TLR_PACKET_HEADER_T

ulDest UINT32 0x20/
DPMINTF_QUE

Destination Queue-Handle

ulSrc UINT32 0 ... 232-1 Source Queue-Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process. Set
to 0 for the Initialization Packet

ulSrcId UINT32 See rules in
section 3.2.1

Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 0 Packet Data Length in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by the
Source Process of the Packet

ulSta UINT32 See Packet Structure Reference

ulCmd UINT32 0x3614 EIP_APS_CONFIG_DONE_REQ - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 x Routing, do not touch

Table 67: EIP_APS_CONFIG_DONE_REQ – Signal end of configuration request

The Application Interface 64/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Structure Reference
#define EIP_APS_CONFIG_DONE_CNF_SIZE 0

typedef struct EIP_APS_PACKET_CONFIG_DONE_CNF_Ttag
{
 TLR_PACKET_HEADER_T tHead;
} EIP_APS_PACKET_CONFIG_DONE_CNF_T;

Packet Description

structure EIP_APS_PACKET_CONFIG_DONE_CNF_T

Type: Confirmation

Area Variable Type Value / Range Description

tHead structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination Queue-Handle

ulSrc UINT32 Source Queue-Handle

ulDestId UINT32 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process. Set
to 0 for the Initialization Packet

ulSrcId UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 0 Packet Data Length in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by the
Source Process of the Packet

ulSta UINT32 See Packet Structure Reference

ulCmd UINT32 0x3615 EIP_APS_CONFIG_DONE_CNF - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 x Routing, do not touch

Table 68: EIP_APS_CONFIG_DONE_CNF – Confirmation of end of configuration Request

The Application Interface 65/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

4.1.4 Register an additional Object Class at the Message Router
This service can be used by the host application in order to register or activate an additional object
class at the message router. This automatically extends the object model of the device by the given
object class (see Figure 1 for the basic object model).

Basically, there are two types for additional objects that can be registered.

1) Register a CIP object that is provided by the stack (e.g. Time Sync object). In that case an
object is activated that is completely handled by the stack (such as the Ethernet Link or
TCP/IP Interface object).

2) Register a CIP object that is not known to the stack and therefore completely handled by the
host application

For type 2 all explicit messages addressing this additional object class will then be forwarded to the
host application via the indication EIP_OBJECT_CL3_SERVICE_IND (section 4.2.3).

Note: When using the Stack Packet Set:

The source queue of this packet is directly bound to the new object. All indications for
the new object will be sent to ulSrc and ulSrcId of the request packet (packet header).

The ulClass parameter represents the class code of the registered class. The predefined class
codes are described in the CIP specification Vol. 1 chapter 5.

CIP Class IDs are divided into the following address ranges to provide for extensions to device
profiles.

Address Range Meaning

0x0001 - 0x0063 Open

0x0064 - 0x00C7 Vendor Specific

0x00C8 - 0x00EF Reserved by ODVA for future use

0x00F0 - 0x02FF Open

0x0300 - 0x04FF Vendor Specific

0x0500 - 0xFFFF Reserved by ODVA for future use

Table 69: Address Ranges for the ulClass parameter

Figure 8 below displays a sequence diagram for the EIP_OBJECT_MR_REGISTER_REQ/CNF
packet.

Figure 8: Sequence Diagram for the EIP_OBJECT_MR_REGISTER_REQ/CNF Packet for the Stack Packet Set

The Application Interface 66/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Structure Reference
typedef enum EIP_OBJECT_MR_REGISTER_OPTION_FLAGS_Etag
{
EIP_OBJECT_MR_REGISTER_OPTION_FLAGS_USE_OBJECT_PROVIDED_BY_STACK = 1, /* Activate a stack internal
 CIP object.
 This option can currently

 be used for the following
 CIP objects
 - Time Sync object
 (class code 0x43)
 */
} EIP_OBJECT_MR_REGISTER_OPTION_FLAGS_E;

typedef struct EIP_OBJECT_MR_REGISTER_REQ_Ttag {
 TLR_UINT32 ulReserved1;
 TLR_UINT32 ulClass;
 TLR_UINT32 ulOptionFlags; /* EIP_OBJECT_MR_REGISTER_OPTION_FLAGS_E */
} EIP_OBJECT_MR_REGISTER_REQ_T;

#define EIP_OBJECT_MR_REGISTER_REQ_SIZE \
 sizeof(EIP_OBJECT_MR_REGISTER_REQ_T)

typedef struct EIP_OBJECT_MR_PACKET_REGISTER_REQ_Ttag {
 TLR_PACKET_HEADER_T tHead;
 EIP_OBJECT_MR_REGISTER_REQ_T tData;
} EIP_OBJECT_MR_PACKET_REGISTER_REQ_T;

Packet Description

Structure EIP_OBJECT_PACKET_MR_REGISTER_REQ_T Type: Request

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T
ulDest UINT32 0x20/

OBJECT_QUE
Destination Queue-Handle. Set to

0: Destination is operating system rcX
32 (0x20): Destination is the protocol stack

ulSrc UINT32 0 ... 232-1 Source Queue-Handle. Set to:

0: when working with loadable firmware.
Queue handle returned by TLR_QUE_IDENTIFY():
when working with loadable firmware.

ulDestId UINT32 0 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

Set to 0, will not be changed

ulSrcId UINT32 0 ... 232-1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process. This variable may be
used for low-level addressing purposes.

ulLen UINT32 12 EIP_OBJECT_MR_REGISTER_REQ_SIZE
– Packet data length in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by
the Source Process of the Packet

ulSta UINT32 See Table 44: EIP_OBJECT_MR_REGISTER_REQ –
Packet Status/Error

ulCmd UINT32 0x1A02

EIP_OBJECT_MR_REGISTER_REQ - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons

ulRout UINT32 × Routing, do not change

tData - Structure EIP_OBJECT_MR_REGISTER_REQ_T
ulReserved1 UINT32 0 Reserved, set to 0

The Application Interface 67/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Structure EIP_OBJECT_PACKET_MR_REGISTER_REQ_T Type: Request
ulClass UINT32 1..0xFFFF Class identifier (predefined class code as described in

the CIP specification Vol. 1 chapter 5 (reference [3])
Take care of the address ranges specified above within
Table 69: Address Ranges for the ulClass parameter.

ulOptionFlags UINT32 For type 1, set to 0

For type 2, set flag
EIP_OBJECT_MR_REGISTER_OPTION_FLAGS_USE_O
BJECT_PROVIDED_BY_STACK

Additional CIP object that can be registered with type 2:
- Time Sync object (class code 0x43)

Table 70: EIP_OBJECT_MR_REGISTER_REQ – Request Command for register a new class object

Packet Structure Reference
typedef struct EIP_OBJECT_PACKET_MR_REGISTER_CNF_Ttag {
 TLR_PACKET_HEADER_T tHead;
} EIP_OBJECT_PACKET_MR_REGISTER_CNF_T;

Packet Description

Structure EIP_OBJECT_PACKET_MR_REGISTER_CNF_T Type: Confirmation

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T
ulDest UINT32 See rules in

section 3.2.1
Destination Queue Handle

ulSrc UINT32 See rules in
section 3.2.1

Source Queue Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

ulSrcId UINT32 See rules in
section 3.2.1

Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 0 Packet data length in bytes

ulId UINT32 0 ... 232-1 Packet Identification, unchanged

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x1A03 EIP_OBJECT_MR_REGISTER_CNF - Command

ulExt UINT32 0 Extension, reserved

ulRout UINT32 See rules in
section 3.2.1

Destination Queue Handle

Table 71: EIP_OBJECT_MR_REGISTER_CNF – Confirmation Command of register a new class object

The Application Interface 68/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

4.1.5 Register a new Assembly Instance
This service can be used by the host application in order to create a new Assembly Instance.

The parameter ulInstance is the assembly instance number that shall be registered at the
assembly class object.

Instances of the assembly object are divided into the following address ranges:

Assembly Instance
Number Range

Meaning

0x0001 - 0x0063 Open (assemblies defined in device profile)

0x0064 - 0x00C7 Vendor Specific assemblies

0x00C8 - 0x02FF Open (assemblies defined in device profile)

0x0300 - 0x04FF Vendor Specific assemblies

0x0500 - 0x000FFFFF Open (assemblies defined in device profile)

0x00100000 - 0xFFFFFFFF Reserved by CIP for future use.
Table 72: Assembly Instance Number Ranges

Note: The instance numbers 192 and 193 (0xC0 and 0xC1) are the Hilscher’s default
assembly instances for Listen Only and Input Only connections. These instance
numbers must not be used for additional assembly instances at configuration with
Basic Configuration Set.

Data belonging to this specific assembly instance will be mapped into the dual port memory at the
offset address ulDPMOffset.

Note: This offset (ulDPMOffset) is not the total DPM offset. It is the relative offset
within the beginning of the corresponding input/output data images
abPd0Input[5760] and abPd0Output[5760] (see reference [1]).

So, usually the first instance (for each data direction) that is created will have
ulDPMOffset = 0.

If multiple assembly instances are registered, make sure that the data range of these
instances does not overlap in the DPM.

Note: When using the Basic Configuration Set default assemblies will be created on
offset address 0.

The data length (in bytes) the assembly instance shall hold can be provided in ulSize. The size of
an instance may not exceed 504 bytes.

The properties of the assembly instance can be configured using the parameter ulFlags.
Properties can be set according to Table 74: Assembly Instance Table 74 below.

As long as no data has ever been set and no connection has been established, the Assembly
Object Instance holds zeroed data.

Figure 9 below displays a sequence diagram for the EIP_OBJECT_AS_REGISTER_REQ/CNF
packet.

The Application Interface 69/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Figure 9: Sequence Diagram for the EIP_OBJECT_AS_REGISTER_REQ/CNF Packet for the Stack Packet Set

Packet Structure Reference
typedef struct EIP_OBJECT_AS_REGISTER_REQ_Ttag {
 TLR_UINT32 ulInstance;
 TLR_UINT32 ulDPMOffset;
 TLR_UINT32 ulSize;
 TLR_UINT32 ulFlags;
} EIP_OBJECT_AS_REGISTER_REQ_T;

#define EIP_OBJECT_AS_REGISTER_REQ_SIZE \
 sizeof(EIP_OBJECT_AS_REGISTER_REQ_T)

typedef struct EIP_OBJECT_AS_PACKET_REGISTER_REQ_Ttag {
 TLR_PACKET_HEADER_T tHead;
 EIP_OBJECT_AS_REGISTER_REQ_T tData;
} EIP_OBJECT_AS_PACKET_REGISTER_REQ_T;

The Application Interface 70/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Description

Structure EIP_OBJECT_AS_PACKET_REGISTER_REQ_T Type: Request

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T
ulDest UINT32 0, 0x20 Destination Queue-Handle. Set to

0: Destination is operating system rcX

32 (0x20): Destination is the protocol stack

ulSrc UINT32 0 ... 232-1 Source Queue-Handle. Set to:

0: when working with loadable firmware.

Queue handle returned by TLR_QUE_IDENTIFY():
when working with loadable firmware.

ulDestId UINT32 0 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

Set to 0, will not be changed

ulSrcId UINT32 0 ... 232-1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process. This variable may be
used for low-level addressing purposes.

ulLen UINT32 16 EIP_OBJECT_AS_REGISTER_REQ_SIZE
- Packet data length in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by
the Source Process of the Packet

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x1A0C EIP_OBJECT_AS_REGISTER_REQ - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons

ulRout UINT32 × Routing, do not change

tData - Structure EIP_OBJECT_AS_REGISTER_REQ_T
ulInstance UINT32 0x0000001...

0xFFFFFFFF
(except 0xC0
and 0xC1, see
description
above)

Assembly instance number
See Table 72: Assembly Instance Number Ranges

ulDPMOffset UINT32 0..5760 DPM offset of the instance data area
Note:
This offset is not the total DPM offset. It is the relative
offset within the beginning of the corresponding
input/output data images abPd0Input[5760] and
abPd0Output[5760]

So, usually the first instance (for each data direction)
that is created will have ulDPMOffset = 0.

If multiple assembly instances are registered, make
sure that the data range of these instances does not
overlap in the DPM.

ulSize UINT32 1..504 Size of the data area for the assembly instance data.

ulFlags UINT32 Bitmap Property Flags for the assembly instance
See Table 74: Assembly Instance

Table 73: EIP_OBJECT_AS_REGISTER_REQ – Request Command for create an Assembly Instance

The Application Interface 71/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The following table shows the meaning of the single bits which can be used to configured specific
assembly instance properties:

Bits Name (Bitmask) Description

31 EIP_AS_FLAG_LISTENONLY
(0x80000000)

If the flag is set the instance is used as listen only connection
point (heartbeat)

30 EIP_AS_FLAG_INPUTONLY
(0x40000000)

If the flag is set the instance is used as input only connection
point (heartbeat)

31...8 Reserved Reserved for future use

7 EIP_AS_FLAG_FIX_SIZE

(0x00000080)
This flag decides whether the assembly instance allows a
connection to be established with a smaller connection size
than defined in ulSize or whether only the exact match is
accepted.
If the bit is set (1), the connection size in a ForwardOpen must
directly correspond to ulSize.

If the bit is not set (0), the connection size can be smaller or
equal to ulSize.
Example:
1) ulSize = 16 (Bit 7 of ulFlags is 0)
 A connection to this assembly instance can
 be opened with a smaller or matching I/O
 size, e.g. 8.

2) ulSize = 6 (Bit 7 of ulFlags is 1)
 A connection can only be opened with
 a matching I/O size, i.e. 6.

6 Reserved Reserved for future use

5 EIP_AS_FLAG_CONFIG

(0x00000020)

If set (1), this assembly instance is a configuration assembly
instance, which can be used to receive configuration data upon
connection establishment.

Note:
Compared to input and output assembly instances a
configuration instance is set only once via the Forward_Open
frame. It is not exchanged cyclically.
On connection establishment the configuration data is sent to
the host application via the packet
EIP_OBJECT_CIP_OBJECT_CHANGE_IND (page 120)
addressing attribute 3 of the corresponding assembly object
instance.

4 Reserved Reserved for future use

3 EIP_AS_FLAG_RUNIDLE

(0x00000008)

If set (1), the assembly instance’s real time format is modeless,
i.e. it does not contain run/idle information.
If not set (0), the assembly instance’s real time format is the 32-
Bit Run/Idle header.

0 EIP_AS_FLAG_READONLY

(0x00000001)

This flag decides whether the newly registered assembly is a
consuming or a producing assembly.

If set (1), the assembly instance is a consuming assembly
instance (can be used for the OT direction). It is able to
consume data from the network. Data for this instance will be
mapped into the DPM Input area (data flow: network  DPM).

If cleared (0), the assembly instance is a producing assembly
instance (can be used for the TO direction). It is able to
produce data on the network. Data for this instance will be
mapped from the DPM Output area (data flow: DPM 
network).

Table 74: Assembly Instance Property Flags

The Application Interface 72/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Source Code Example

The following sample code shows how to fill in the parameter fields of the
EIP_OBJECT_AS_REGISTER_REQ packet in order to create two assembly instances, one input
and one output instance.
/* Fill the EIP_OBJECT_AS_REGISTER_REQ packet to create an input (TO) assembly instance 100 that
holds 16 bytes of data, has the modeless real-time format and does not allow smaller
 connection sizes. */

EIP_OBJECT_AS_PACKET_REGISTER_REQ_T tReq;

 tReq.tHead.ulCmd = EIP_OBJECT_AS_REGISTER_REQ;
 tReq.tHead.ulLen = EIP_OBJECT_AS_REGISTER_REQ_SIZE;

 tReq.tData.ulInstance = 100;
 tReq.tData.ulSize = 16;
 tReq.tData.ulFlags = EIP_AS_FLAG_RUNIDLE | EIP_AS_FLAG_FIX_SIZE;
 tReq.tData.ulDPMOffset = 0;

 /* Fill the EIP_OBJECT_AS_REGISTER_REQ packet to create an output (OT) assembly instance 101
 that holds 8 bytes of data, has the run/idle real-time format and does allow smaller
 connection sizes. */

 EIP_OBJECT_AS_PACKET_REGISTER_REQ_T tReq;

 tReq.tHead.ulCmd = EIP_OBJECT_AS_REGISTER_REQ;
 tReq.tHead.ulLen = EIP_OBJECT_AS_REGISTER_REQ_SIZE;

 tReq.tData.ulInstance = 101;
 tReq.tData.ulSize = 8;
 tReq.tData.ulFlags = EIP_AS_FLAG_READONLY;
 tReq.tData.ulDPMOffset = 0;

The Application Interface 73/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Structure Reference
typedef struct EIP_OBJECT_AS_REGISTER_CNF_Ttag {
 TLR_UINT32 ulInstance;
 TLR_UINT32 ulDPMOffset;
 TLR_UINT32 ulSize;
 TLR_UINT32 ulFlags;
 TLR_HANDLE hDataBuf;
} EIP_OBJECT_AS_REGISTER_CNF_T;

#define EIP_OBJECT_AS_REGISTER_CNF_SIZE \
 sizeof(EIP_OBJECT_AS_REGISTER_CNF_T)

typedef struct EIP_OBJECT_PACKET_AS_REGISTER_CNF_Ttag {
 TLR_PACKET_HEADER_T tHead;
} EIP_OBJECT_PACKET_AS_REGISTER_CNF_T;

Packet Description

Structure EIP_OBJECT_PACKET_AS_REGISTER_CNF_T Type: Confirmation

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T
ulDest UINT32 See rules in

section 3.2.1
Destination Queue-Handle, unchanged

ulSrc UINT32 See rules in
section 3.2.1

Source Queue-Handle, unchanged

ulDestId UINT32 See rules in
section 3.2.1

Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.
Set to 0 for the Initialization Packet

ulSrcId UINT32 See rules in
section 3.2.1

Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 20 EIP_OBJECT_AS_REGISTER_CNF_SIZE
- Packet data length in bytes

ulId UINT32 0 ... 232-1 Packet Identification, unchanged

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x1A0D EIP_OBJECT_AS_REGISTER_CNF - Command

ulExt UINT32 0 Extension, reserved

ulRout UINT32 × Routing, do not change

tData - Structure EIP_OBJECT_AS_REGISTER_CNF_T
ulInstance UINT32 Instance of the Assembly Object (from the request

packet)

ulDPMOffset UINT32 Offset of the data in the dual port memory (from the
request packet)

ulSize UINT32 <=504 Size of the assembly instance data (from the request
packet)

ulFlags UINT32 Property Flags of the assembly instance
(from the request packet)

hDataBuf UINT32 Handle to the tri-state buffer of the assembly instance

Table 75: EIP_OBJECT_AS_REGISTER_CNF – Confirmation Command of register a new class object

The Application Interface 74/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

4.1.6 Set the Device’s Identity Information
This request packet can be used by the host application in order to configure the device’s Identity
Object Instance (CIP Class ID 0x01).

Figure 10 below displays a sequence diagram for the
EIP_OBJECT_ID_SETDEVICEINFO_REQ/CNF packet in case the host application uses the
Extended Configuration Set.

Figure 10: Sequence Diagram for the EIP_OBJECT_ID_SETDEVICEINFO_REQ/CNF Packet for the Stack Packet Set

Packet Structure Reference
#define EIP_ID_MAX_PRODUKTNAME_LEN 32
typedef struct EIP_OBJECT_ID_SETDEVICEINFO_REQ_Ttag {
 TLR_UINT32 ulVendId;
 TLR_UINT32 ulProductType;
 TLR_UINT32 ulProductCode;
 TLR_UINT32 ulMajRev;
 TLR_UINT32 ulMinRev;
 TLR_UINT32 ulSerialNumber;
 TLR_UINT8 abProductName[EIP_ID_MAX_PRODUKTNAME_LEN]
} EIP_OBJECT_ID_SETDEVICEINFO_REQ_T;

#define EIP_OBJECT_ID_SETDEVICEINFO_REQ_SIZE \
 (sizeof(EIP_OBJECT_ID_SETDEVICEINFO_REQ_T) - \
 EIP_ID_MAX_PRODUKTNAME_LEN)

typedef struct EIP_OBJECT_PACKET_ID_SETDEVICEINFO_REQ_Ttag {
 TLR_PACKET_HEADER_T tHead;
 EIP_OBJECT_ID_SETDEVICEINFO_REQ_T tData;
} EIP_OBJECT_PACKET_ID_SETDEVICEINFO_REQ_T;

The Application Interface 75/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Description

Structure EIP_OBJECT_PACKET_ID_SETDEVICEINFO_REQ_T Type: Request

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T
ulDest UINT32 0x20/

OBJECT_QUE
Destination Queue-Handle. Set to

0: Destination is operating system rcX
32 (0x20): Destination is the protocol stack

ulSrc UINT32 0 ... 232-1 Source Queue-Handle. Set to:

0: when working with loadable firmware.
Queue handle returned by TLR_QUE_IDENTIFY():
when working with loadable firmware.

ulDestId UINT32 0 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

Set to 0, will not be changed

ulSrcId UINT32 0 ... 232-1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process. This variable may be
used for low-level addressing purposes.

ulLen UINT32 24 + n EIP_OBJECT_ID_SETDEVICEINFO_REQ_SIZE + n
- Packet data length in bytes

n is the Application data count of abProductName[] in
bytes

n = 0 … EIP_ID_MAX_PRODUKTNAME_LEN (32)

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by
the Source Process of the Packet

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x1A16 EIP_OBJECT_ID_SETDEVICEINFO_REQ - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons

ulRout UINT32 × Routing, do not change

tData - Structure EIP_OBJECT_ID_SETDEVICEINFO_REQ_T
ulVendID UINT32 1..65535 Vendor identification:

This is an identification number for the manufacturer of
an EtherNet/IP device.
Vendor IDs are managed by ODVA (see
www.odva.org).
Default value: 283 (Hilscher)
The value 0 is not a valid Vendor ID. However, when
using value 0 here, the stack automatically chooses the
default Vendor ID (283 - Hilscher GmbH).

http://www.odva.org/

The Application Interface 76/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Structure EIP_OBJECT_PACKET_ID_SETDEVICEINFO_REQ_T Type: Request
ulProductType UINT32 0..65535 CIP Device Type (former “Product Type”)

The list of device types is managed by ODVA (see
www.odva.org). It is used to identify the device profile
that a particular product is using. Device profiles define
minimum requirements a device must implement as well
as common options.

Publicly defined: 0x00 - 0x64
Vendor specific: 0x64 - 0xC7
Reserved by CIP: 0xC8 - 0xFF
Publicly defined: 0x100 - 0x2FF
Vendor specific: 0x300 - 0x4FF
Reserved by CIP: 0x500 - 0xFFFF

Default: 0x0C (Communication Device)
The value 0 is not a valid Product Type. However, when
using value 0 here, the stack automatically chooses the
default Product Type (0x0C).

ulProductCode UINT32 1..65535 Product code
The vendor assigned Product Code identifies a
particular product within a device type. Each vendor
assigns this code to each of its products. The Product
Code typically maps to one or more catalog/model
numbers. Products shall have different codes if their
configuration and/or runtime options are different. Such
devices present a different logical view to the network.
On the other hand for example, two products that are
the same except for their color or mounting feet are the
same logically and may share the same product code.
The value zero is not valid.
The value 0 is not a valid Product Code. However,
when using value 0 here, the stack automatically
chooses the default Product Code dependent on the
chip type (netX50/100 etc.) that is used.

ulMajRev UINT32 1..127 Major revision

ulMinRev UINT32 1..255 Minor revision

ulSerialNumber UINT32 0... 0xFFFFFFFF Serial Number of the device
This parameter is a number used in conjunction with the
Vendor ID to form a unique identifier for each device on
any CIP network. Each vendor is responsible for
guaranteeing the uniqueness of the serial number
across all of its devices.
Usually, this number will be set automatically by the
firmware, if a security memory is available. In this case
leave this parameter at value 0.

abProductName[32] UINT8[] Product Name
This text string should represent a short description of
the product/product family represented by the product
code. The same product code may have a variety of
product name strings.
Byte 0 indicates the length of the name. Bytes 1 -30
contain the characters of the device name)
Example: “Test Name”
abDeviceName[0] = 9
abDeviceName[1..9] = “Test Name”

Table 76: EIP_OBJECT_ID_SETDEVICEINFO_REQ – Request Command for open a new connection

http://www.odva.org/

The Application Interface 77/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Source Code Example
#define MY_VENDOR_ID 283
#define PRODUCT_COMMUNICATION_ADAPTER 12

void APS_SetDeviceInfo_req(EIP_APS_RSC_T FAR* ptRsc)
{
 EIP_APS_PACKET_T* ptPck;

 if(TLR_POOL_PACKET_GET(ptRsc->tLoc.hPool,&ptPck) == TLR_S_OK) {

 ptPckt->tDeviceInfoReq.tHead.ulCmd = EIP_OBJECT_ID_SETDEVICEINFO_REQ;
 ptPckt->tDeviceInfoReq.tHead.ulSrc = (UINT32)ptRsc->tLoc.hQue;
 ptPckt->tDeviceInfoReq.tHead.ulSta = 0;
 ptPckt->tDeviceInfoReq.tHead.ulId = ulIdx;
 ptPckt->tDeviceInfoReq.tHead.ulLen = EIP_OBJECT_ID_SETDEVICEINFO_REQ_SIZE;

 ptPckt->tDeviceInfoReq.tData.ulVendId = MY_VENDOR_ID;
 ptPckt->tDeviceInfoReq.tData.ulProductType = PRODUCT_COMMUNICATION_ADAPTER;
 ptPckt->tDeviceInfoReq.tData.ulProductCode = 1;
 ptPckt->tDeviceInfoReq.tData.ulMajRev = 1;
 ptPckt->tDeviceInfoReq.tData.ulSerialNumber = 1;
 ptPckt->tDeviceInfoReq.tData.abProductName[0] =15;
 TLR_MEMCPY(&ptPckt->tDeviceInfoReq.tData.abProductName[1], “Scanner Example”,
 ptPckt->tDeviceInfoReq.tData.abProductName[0]);

 TLR_QUE_SENDPACKET_FIFO((TLR_HANDLE)ptRsc->tRem.hQueEipObject, ptPck,
 TLR_INFINITE);
 }
}

The Application Interface 78/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Structure Reference
typedef struct EIP_OBJECT_ID_SETDEVICEINFO_CNF_Ttag {
 TLR_PACKET_HEADER_T tHead;
} EIP_OBJECT_PACKET_ID_SETDEVICEINFO_CNF_T;

Packet Description

Structure EIP_OBJECT_PACKET_ID_SETDEVICEINFO_CNF_T Type: Confirmation

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T
ulDest UINT32 See rules in

section 3.2.1
Destination Queue Handle

ulSrc UINT32 See rules in
section 3.2.1

Source Queue Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

ulSrcId UINT32 See rules in
section 3.2.1

Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 0 Packet data length in bytes

ulId UINT32 0 ... 232-1 Packet Identification, unchanged

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x1A17 EIP_OBJECT_ID_SETDEVICEINFO_CNF – Command

ulExt UINT32 0 Extension, reserved

ulRout UINT32 × Routing, do not change

Table 77: EIP_OBJECT_ID_SETDEVICEINFO_CNF – Confirmation Command of setting device information

Source Code Example
void APS_SetDeviceInfo_cnf(EIP_APS_RSC_T FAR* ptRsc, EIP_APS_PACKET_T* ptPck)
{
 if(ptPck->tDeviceInfoCnf.tHead.ulSta != TLR_S_OK){
 APS_ErrorHandling(ptRsc);
 }

 TLR_POOL_PACKET_RELEASE(ptRsc->tLoc.hPool, ptPck);

The Application Interface 79/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

4.1.7 Register Service
This packet can be used if the device shall support services that are not directly bound to a CIP
object. Usually, services use the CIP addressing format ClassInstanceAtttribute. But if for
example TAGs (access data within the device by using strings instead of the normal CIP
addressing) shall be supported, no specific object can be addressed.

Therefore, the host application can register a vendor specific service code (see Table 102). If the
device then receives this service (sent from a Scanner of Tool) it will be forwarded to the host
application via the indication EIP_OBJECT_CL3_SERVICE_IND (section 4.2.3). Again, the
indication is only sent if the service does not address an object directly.

Figure 11 below displays a sequence diagram for the
EIP_OBJECT_REGISTER_SERVICE_REQ/CNF packet in case the host application uses the
Extended or Stack Packet Set

Figure 11: Sequence Diagram for the EIP_OBJECT_REGISTER_SERVICE_REQ/CNF Packet for the Stack Packet Set

The Application Interface 80/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Structure Reference
/* EIP_OBJECT_REGISTER_SERVICE_REQ */
 struct EIP_OBJECT_REGISTER_SERVICE_REQ_Ttag
 {
 TLR_UINT32 ulService; /* Service Code */
 };

 /* command for register a new object to the message router */
 struct EIP_OBJECT_PACKET_REGISTER_SERVICE_REQ_Ttag
 {
 TLR_PACKET_HEADER_T tHead;
 EIP_OBJECT_REGISTER_SERVICE_REQ_T tData;
 };

Packet Description

Structure EIP_OBJECT_PACKET_REGISTER_SERVICE_REQ_T Type: Request

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T
ulDest UINT32 OBJECT_QUE Destination Queue-Handle. Set to

0: Destination is operating system rcX
32 (0x20): Destination is the protocol stack

ulSrc UINT32 0 ... 232-1 Source Queue-Handle. Set to:

0: when working with loadable firmware.
Queue handle returned by TLR_QUE_IDENTIFY():
when working with loadable firmware.

ulDestId UINT32 0 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

Set to 0, will not be changed

ulSrcId UINT32 0 ... 232-1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process. This variable may be
used for low-level addressing purposes.

ulLen UINT32 4 Packet Data Length (In Bytes)

ulId UINT32 0 ... 232-1 Packet Identification As Unique Number

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x00001A44 EIP_OBJECT_REGISTER_SERVICE_REQ - Command /
Response

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

tData - structure EIP_OBJECT_REGISTER_SERVICE_REQ_T

ulService UINT32 Vendor specific service code (see Table 102)

Table 78: EIP_OBJECT_READY_REQ - Register Service

The Application Interface 81/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Structure Reference
 struct EIP_OBJECT_PACKET_REGISTER_SERVICE_CNF_Ttag
 {
 TLR_PACKET_HEADER_T tHead;
 };

Packet Description

Structure EIP_OBJECT_PACKET_REGISTER_SERVICE_CNF_T Type: Confirmation

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T
ulDest UINT32 See rules in

section 3.2.1
Destination Queue Handle

ulSrc UINT32 See rules in
section 3.2.1

Source Queue Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

ulSrcId UINT32 See rules in
section 3.2.1

Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 0 Packet Data Length (In Bytes)

ulId UINT32 0 ... 232-1 Packet Identification as unique Number

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x00001A45 EIP_OBJECT_REGISTER_SERVICE_CNF - Command /
Response

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

Table 79: EIP_OBJECT_READY_CNF – Confirmation Command for Register Service Request

The Application Interface 82/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

4.1.8 Set Parameter
This packet can be used to activate special options and behavior of the protocol stack.

Table 80 gives an overview of all possible parameters:

Parameter Flags – ulParameterFlags

Bit Description
0 EIP_OBJECT_PRM_FWRD_OPEN_CLOSE_FORWARDING

Enables forwarding of Forward_Open and Forward_Close frames to the user application task.
Forward_Open frames:
If set (1), all Forward_Open frames will be forwarded to the host application via the packet
EIP_OBJECT_LFWD_OPEN_FWD_IND.

If not set (0), the Forward_Open will not be forwarded.
Forward_Close frames:
If set (1), all Forward_Close frames will be forwarded via the packet EIP_OBJECT_FWD_CLOSE_FWD_IND.
If not set (0), the Forward_Open/Close will not be forwarded.

8-31 Reserved
Must be set to 0

Table 80: EIP_OBJECT_SET_PARAMETER_REQ – Packet Status/Error

Packet Structure Reference
#define EIP_OBJECT_PRM_FWRD_OPEN_CLOSE_FORWARDING 0x00000001

 typedef struct EIP_OBJECT_SET_PARAMETER_REQ_Ttag
 {
 TLR_UINT32 ulParameterFlags;
 } EIP_OBJECT_SET_PARAMETER_REQ_T;

 #define EIP_OBJECT_SET_PARAMETER_REQ_SIZE

sizeof(EIP_OBJECT_SET_PARAMETER_REQ_T)

 typedef struct EIP_OBJECT_PACKET_SET_PARAMETER_REQ_Ttag
 {
 TLR_PACKET_HEADER_T tHead;
 EIP_OBJECT_SET_PARAMETER_REQ_T tData;
 }EIP_OBJECT_PACKET_SET_PARAMETER_REQ_T;

The Application Interface 83/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Description

Structure EIP_OBJECT_PACKET_SET_PARAMETER_REQ_T Type: Request

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T
ulDest UINT32 0x20/

DPMINTF_QUE
Destination Queue Handle

ulSrc UINT32 0 ... 232-1 Source Queue Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.
Set to 0 for the Initialization Packet

ulSrcId UINT32 See rules in
section 3.2.1

Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 4 EIP_OBJECT_SET_PARAMETER_REQ_SIZE
Packet Data Length (In Bytes)

ulId UINT32 0 ... 232-1 Packet Identification As Unique Number

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x00001AF2 EIP_OBJECT_SET_PARAMETER_REQ – Command

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

tData - structure EIP_OBJECT_SET_PARAMETER_REQ_T
ulParameterFlags UINT32 See Table 80: EIP_OBJECT_SET_PARAMETER_REQ

– Packet Status/Error

Table 81: EIP_OBJECT_SET_PARAMETER_REQ – Set Parameter Request Packet

The Application Interface 84/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Structure Reference
 typedef struct EIP_OBJECT_PACKET_SET_PARAMETER_CNF_Ttag
 {
 TLR_PACKET_HEADER_T tHead;
 } EIP_OBJECT_PACKET_SET_PARAMETER_CNF_T;

#define EIP_OBJECT_SET_PARAMETER_CNF_SIZE 0

Packet Description

Structure EIP OBJECT_PACKET_SET_PARAMETER_CNF_T Type: Confirmation

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T
ulDest UINT32 See rules in

section 3.2.1
Destination Queue Handle

ulSrc UINT32 See rules in
section 3.2.1

Source Queue Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

ulSrcId UINT32 See rules in
section 3.2.1

Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 0 Packet Data Length (In Bytes)

ulId UINT32 Packet Identification As Unique Number

ulSta UINT32 See Status/Error Codes Overview

ulCmd UINT32 0x00001AF3 EIP_OBJECT_SET_PARAMETER_CNF– Command

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

Table 82: EIP_OBJECT_SET_PARAMETER_CNF – Set Parameter Confirmation Packet

The Application Interface 85/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

4.1.9 CIP Service Request
This packet can be used to access a CIP object within the EtherNet/IP Stack.

The service to be performed is selected by setting the parameter ulService of the request
packet.

What attributes of an object can be accessed and what services are available for the objects
please see section 2 "Available CIP Classes in the Hilscher EtherNet/IP Stack”.

The class and the instance of the object to be accessed are selected by the variables ulClass
and ulInstance of the request packet. In case the requested service will affect an attribute (e.g.
services Get_Attribute_Single and Set_Attribute_Single), this attribute is selected by
variable ulAttribute of the request packet. Set ulAttribute to 0 when selection of an
attribute is not necessary.

If data need to be sent along with the service, this can be achieved by using the array abData[].
The length of data in abData[] must then be added to the ulLen field of the packet header.

The result of the service is delivered in the fields ulGRC (Generic Error Code) and ulERC
(Additional Error Code) of the confirmation packet (see Table 83).

If there is data received along with the confirmation this can be found in the array abData[].The
ulLen field of the packet header then shows how many bytes are valid within the array.

In case of successful execution, the variables ulGRC and ulERC of the confirmation packet will
have the value 0.

Usually, in case of an error only the Generic Error Code of the confirmation packet is unequal to 0.
Table 83 shows possible GRC values and their meaning.

ulGRC

ulGRC Signification
0 No error

2 Resources unavailable

8 Service not available

9 Invalid attribute value

11 Already in request mode

12 Object state conflict

14 Attribute not settable

15 A permission check failed

16 State conflict, device state prohibits the command execution

19 Not enough data received

20 Attribute not supported

21 Too much data received

22 Object does not exist

23 Reply data too large, internal buffer to small

Table 83: Generic Error (Variable ulGRC)

However, if an error concerning the connection manager occurs, the following ERC values might
be used:

The Application Interface 86/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

ulERC

ulERC Signification
0 No error

0x100 Connection already in use

0x103 Transport type not supported

0x106 Multiple configuration attempts

0x107 Trying to close inactive connection

0x108 Unsupported connection type

0x109 Connection size mismatch

0x110 Connection unconfigured

0x111 Unsupportable RPI

0x113 Conn Mgr out of connections

0x114 Mismatch in electronic key

0x115 Mismatch in electronic key

0x116 Mismatch in electronic key

0x117 Nonexistent instance number

0x118 Bad config instance number

0x119 No controlling connection open

0x11A Application out of connections

0x11C The transport class requested in the Transport Type/Trigger parameter is not supported.

0x11D The production trigger requested in the Transport Type/Trigger parameter is not supported.

0x11E The direction requested in the Transport Type/Trigger parameter is not supported.

0x11F This extended status code shall be returned as the result of specifying an O2T fixed /
variable flag that is not supported.

0x120 This extended status code shall be returned as the result of specifying a T2O fixed / variable
flag that is not supported.

0x121 This extended status code shall be returned as the result of specifying an O2T priority code
that is not supported.

0x122 This extended status code shall be returned as the result of specifying a T2O priority code
that is not supported. */

0x123 This extended status code shall be returned as the result of specifying an O2T connection
type that is not supported

0x124 This extended status code shall be returned as the result of specifying a T2O connection
type that is not supported

0x125 This extended status code shall be returned as the result of specifying an O2T Redundant
Owner flag that is not supported

0x126
This extended status code is returned when the target device determines that the data
segment provided in the Connection_Path parameter did not contain an acceptable number
of 16-bit words for the configuration application path requested.

0x127
This extended status code is returned by the target when the size of the consuming object
declared in the Forward_Open request and available on the target does not match the size
declared in the O->T Network Connection Parameter. */

0x128
This extended status code is returned by the target when the size of the producing object
declared in the Forward Open request and available on the target does not match the size
declared in the T->O Network Connection Parameter.

0x129

The configuration application path specified in the connection path does not correspond to a
valid configuration application path within the target application. This error could also be
returned if a configuration application path was required, but not provided by a connection
request

0x12A The consumed application path specified in the connection path does not correspond to a
valid consumed application path within the target application. This error could also be

The Application Interface 87/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

ulERC Signification
returned if a consumed application path was required, but not provided by a connection
request */

0x12B

The produced application path specified in the connection path does not correspond to a
valid produced application path within the target application. This error could also be
returned if a produced application path was required, but not provided by a connection
request.

0x12C Configuration Symbol does not exist. The originator attempts to connect to a configuration
tag name, but the name is not on the list of tags defined on the target. */

0x12D Consuming Symbol does not exist. The originator attempts to connect to a consuming tag
name, but the name is not on the list of tags defined on the target. */

0x12E Producing Symbol does not exist. The originator attempts to connect to a producing tag
name, but the name is not on the list of tags defined on the target. */

0x12F The combination of configuration and/or consume and/or produce application paths specified
in the connection path are inconsistent with each other.

0x130
Information in the data segment is not consistent with the format of the consumed data. For
example the configuration data specifies float configuration data while the consumed path
specifies integer data.

0x131
Information in the data segment is not consistent with the format of the produced data. For
example the configuration data specifies float configuration data while the produced path
specifies integer data. */

0x203 Using a timed out connection

0x204 Unconnected Send timed out

0x205 Unconnected Send param. error

0x301 No buffer memory available

0x302 Insufficient bandwidth left

0x303 Out of gen screeners

0x304 Not configured to send RT data

0x305 sig does not match sig store in CCM

0x306 ccm is not responding to req

0x311 Nonexistent port

0x312 Invalid link address in path

0x315 Invalid segment in path

0x316 Path & conn not equal in close

0x317 Net seg not present or bad

0x318 Link address to self invalid

0x319 Resources in secondary unavail

0x31D Redundant connection mismatch

0x813 A multicast connection has been requested between a producer and a consumer that are on
different subnets, and the producer is not configured for off-subnet multicast.

Table 84: Extended error codes for the connection manager

Figure 12 below displays a sequence diagram for the EIP_OBJECT_CIP_SERVICE_REQ/CNF
packet: in case the host application uses the Basic, Extended or Stack Packet Set (see 3.2
“Configuration Using the Packet API”).

The Application Interface 88/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Figure 12: Sequence Diagram for the EIP_OBJECT_CIP_SERVICE_REQ/CNF Packet for the Stack Packet Set

Packet Structure Reference
#define EIP_OBJECT_MAX_PACKET_LEN 1520 /*!< Maximum packet length */

typedef struct EIP_OBJECT_CIP_SERVICE_REQ_Ttag
{
 TLR_UINT32 ulService; /*!< CIP service code */
 TLR_UINT32 ulClass; /*!< CIP class ID */
 TLR_UINT32 ulInstance; /*!< CIP instance number */
 TLR_UINT32 ulAttribute; /*!< CIP attribute number */
 TLR_UINT8 abData[EIP_OBJECT_MAX_PACKET_LEN]; /*!< CIP Service Data.

} EIP_OBJECT_CIP_SERVICE_REQ_T;

typedef struct EIP_OBJECT_PACKET_CIP_SERVICE_REQ_Ttag
{
 TLR_PACKET_HEADER_T tHead;
 EIP_OBJECT_CIP_SERVICE_REQ_T tData;
} EIP_OBJECT_PACKET_CIP_SERVICE_REQ_T;

#define EIP_OBJECT_CIP_SERVICE_REQ_SIZE (sizeof(EIP_OBJECT_CIP_SERVICE_REQ_T) -
EIP_OBJECT_MAX_PACKET_LEN)

The Application Interface 89/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Description

Structure EIP_OBJECT_PACKET_CIP_SERVICE_REQ_T Type: Request

Variable Type Value / Range Description

tHead - Structure TLR_PACKET_HEADER_T
ulDest UINT32 0x20/

OBJECT_QUE
Destination Queue-Handle. Set to
0: Destination is operating system rcX
32 (0x20): Destination is the protocol stack

ulSrc UINT32 0 ... 232-1 Source Queue-Handle. Set to:
0: when working with loadable firmware.
Queue handle returned by TLR_QUE_IDENTIFY(): when working
with loadable firmware.

ulDestId UINT32 0 Destination End Point Identifier, specifying the final receiver of the
packet within the Destination Process. Set to 0 for the Initialization
Packet

ulSrcId UINT32 0 ... 232-1 Source End Point Identifier, specifying the origin of the packet inside
the Source Process

ulLen UINT32 16+n Packet Data Length in bytes
n = Length of service data in bytes (see field abData[])

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by the Source
Process of the Packet

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x1AF8 EIP_OBJECT_CIP_SERVICE_REQ - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 x Routing, do not touch

tData - Structure EIP_OBJECT_CIP_SERVICE_REQ_T
ulService UINT32 1-31 CIP Service Code

ulClass UINT32 Valid Class ID CIP Class ID (according to “The CIP Networks Library, Volume 1
Common Industrial Protocol Specification Chapter 5, Table 5-1.1”)
For available object classes see section 2 “Available CIP Classes in
the Hilscher EtherNet/IP Stack” on page 12.

ulInstance UINT32 Valid Instance
number

CIP Object Instance number.
For available object classes and instances see section 2 “Available
CIP Classes in the Hilscher EtherNet/IP Stack” on page 12.

ulAttribute UINT32 Valid Attribute
number

CIP Attribute number (required for get/set attribute only, otherwise
set it to 0)).
For available object classes and attributes see section 2 “Available
CIP Classes in the Hilscher EtherNet/IP Stack” on page 12.

abData[1520] UINT8[] 0-1520 CIP Service data
Number of bytes n provided in this field must be added to the packet
header length field ulLen.

Set the proper packet length as follows:
ptReq->tHead.ulLen =
EIP_OBJECT_CIP_SERVICE_REQ_SIZE + n

Table 85: EIP_OBJECT_CIP_SERVICE_REQ – CIP Service Request

The Application Interface 90/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Structure Reference
#define EIP_OBJECT_MAX_PACKET_LEN 1520 /*!< Maximum packet length */

typedef struct EIP_OBJECT_CIP_SERVICE_CNF_Ttag
{
 TLR_UINT32 ulService; /*!< CIP service code */
 TLR_UINT32 ulClass; /*!< CIP class ID */
 TLR_UINT32 ulInstance; /*!< CIP instance number */
 TLR_UINT32 ulAttribute; /*!< CIP attribute number */

 TLR_UINT32 ulGRC; /*!< Generic Error Code */
 TLR_UINT32 ulERC; /*!< Extended Error Code */

 TLR_UINT8 abData[EIP_OBJECT_MAX_PACKET_LEN]; /*!< CIP service data.

} EIP_OBJECT_CIP_SERVICE_CNF_T;

typedef struct EIP_OBJECT_PACKET_CIP_SERVICE_CNF_Ttag
{
 TLR_PACKET_HEADER_T tHead;
 EIP_OBJECT_CIP_SERVICE_CNF_T tData;
} EIP_OBJECT_PACKET_CIP_SERVICE_CNF_T;

#define EIP_OBJECT_CIP_SERVICE_CNF_SIZE (sizeof(EIP_OBJECT_CIP_SERVICE_CNF_T)) -
EIP_OBJECT_MAX_PACKET_LEN

The Application Interface 91/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Description

Structure EIP_OBJECT_PACKET_CIP_SERVICE_CNF_T Type: Confirmation

Variable Type Value / Range Description

tHead - Structure TLR_PACKET_HEADER_T
ulDest UINT32 See rules in

section 3.2.1
Destination Queue Handle

ulSrc UINT32 See rules in
section 3.2.1

Source Queue Handle

ulDestId UINT32 0 Destination End Point Identifier

ulSrcId UINT32 x Source End Point Identifier

ulLen UINT32 24+n Packet Data Length in bytes
n = Length of service data in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by the Source
Process of the Packet

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x1AF9 EIP_OBJECT_CIP_SERVICE_CNF - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 x Routing, do not touch

tData - Structure EIP_OBJECT_CIP_SERVICE_CNF_T
ulService UINT32 1-31 CIP Service Code

ulClass UINT32 Valid Class ID CIP Class ID (according to “The CIP Networks Library, Volume 1
Common Industrial Protocol Specification Chapter 5, Table 5-1.1”

ulInstance UINT32 Valid Instance
number

CIP Instance number

ulAttribute UINT32 Valid Attribute
number

CIP Attribute number (for get/set attribute only)

ulGRC UINT32 Generic error code. (according to “The CIP Networks Library, Volume
1 Common Industrial Protocol Specification Chapter 5, Appendix B-1.
Volume 1) (see also Table 83)

ulERC UINT32 Additional error code.

abData[1520] UINT8[] CIP Service data
Number of bytes provided in this field must be calculated using the
packet header length field ulLen.

Proceed as follows to get the data size:

number of bytes provided in abData =
tHead.ulLen - EIP_OBJECT_CIP_SERVICE_REQ_SIZE

Table 86: EIP_OBJECT_CIP_SERVICE_CNF – Confirmation to CIP Service Request

The Application Interface 92/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

4.1.10 Set Watchdog Time
This packet is used to set the watchdog time.
For more details see reference [1]

4.1.11 Register Application
This packet is used to register an application at the stack to receive indications.
For more details see reference [1]

4.1.12 Start/Stop Communication
This packet is used to start or stop the communication. It has the same behavior as set bus on/off.

For more details see reference [1]

4.1.13 Channel Init
This packet is used to perform a channel init.

For more details see reference [1]

4.1.14 Modify Firmware Parameter
This packet is used to modify configurations parameter. The EtherNet/IP Adapter stack supports
the following parameters to modify:

ParameterID Data

Name Type Description

PID_EIP_IP_CONFIGURATION

(0x3000A001)

ulIP UINT32 IP address

ulNetmask UINT32 Network mask

ulGateway UINT32 Gateway address

PID_EIP_IP_CONFIGCONTROL

(0x3000A002)

ulConfiguration
Control

UINT32 PRM_CFGCTRL_STORED_CFG 0
PRM_CFGCTRL_DHCP 1
PRM_CFGCTRL_BOOTP 2
PRM_CFGCTRL_FIXIP 3

Table 87 RCX_SET_FW_PARAMETER_REQ ParameterID

For more details see reference [1]

The Application Interface 93/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

4.2 Acyclic events indicated by the stack
This chapter explains the events indicated by the stack. Depending on the configuration the stack
sends the following indications:

Overview over the indications of the EtherNet/IP Adapter

No. of
section

Packet Command
code
(REQ/CNF or
IND/RES)

Page

4.2.1 EIP_OBJECT_RESET_IND 0x00001A24 94

4.2.2 EIP_OBJECT_CONNECTION_IND 0x00001A2E 98

4.2.3 EIP_OBJECT_CL3_SERVICE_IND 0x00001A3E 107

4.2.4 EIP_OBJECT_CIP_OBJECT_CHANGE_IND 0x00001AFA 120

4.2.5 RCX_LINK_STATUS_CHANGE_IND 0x00002F8A 123
Table 88: Overview over the indications of the EtherNet/IP Adapter

The Application Interface 94/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

4.2.1 Indication of a Reset Request from the network
This indication notifies the host application about a reset service request from the network. This
means an EtherNet/IP device (could also be a Tool) just sent a reset service (CIP service code
0x05) to the device and waits for a response.

It is important to send the reset response packet right away, since this triggers the response to the
reset service on the network. So, in case the response to the indication is not sent at all, the
requesting node on the network will not get any answer to its reset request.

There are two reset types defined (0 and 1) that tell the host application how the reset shall be
performed. Basically, the difference between these is the way the configuration data is handled.
Reset type 0 (the default reset type that every EtherNet/IP device needs to support) only emulates
a power cycle, where all configuration data (such as the IP settings) will be kept. Reset type 1 on
the other side shall bring the device back to the factory defaults.

Value Meaning as defined in the CIP Specification, Volume 1

0 Reset shall be done emulating power cycling of the device.

1 Return as closely as possible to the factory default configuration. Reset is then done emulating power
cycling of the device.

2 This type of reset is not supported, since it is not yet specified for EtherNet/IP devices.

3 - 99 Reserved by CIP

100 - 199 Vendor-specific

200 - 255 Reserved by CIP

Table 89: Allowed Values of ulResetTyp

With the EIP_OBJECT_RESET_RES packet the request can be accepted (ulSta == TLR_S_OK).or
denied (ulSta != TLR_S_OK). If the reset request is accepted the stack will automatic start reset
procedure.

Figure 13 below displays a sequence diagram for the EIP_OBJECT_RESET_IND/RES packet with
reset type 0 and 1. For all available Packet Sets (Basic, Extended or Stack Packet Set - see 3.2
“Configuration Using the Packet API”) it is illustrated what the host application needs to do when
receiving the reset indication.

The Application Interface 95/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Figure 13: Sequence Diagram for the EIP_OBJECT_RESET_IND/RES Packet for the Basic Packet Set

Packet Structure Reference
 struct EIP_OBJECT_RESET_IND_Ttag
{
 TLR_UINT32 ulDataIdx; /*!< Index of the service */
 TLR_UINT32 ulResetTyp; /*!< Type of the reset */
};

struct EIP_OBJECT_PACKET_RESET_IND_Ttag
{
 TLR_PACKET_HEADER_T tHead;
 EIP_OBJECT_RESET_IND_T Data;
};

The Application Interface 96/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Description

Structure EIP_OBJECT_PACKET_RESET_IND_T Type: Indication

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination Queue-Handle. Set to

0: Destination is operating system rcX

32 (0x20): Destination is the protocol stack

ulSrc UINT32 Source Queue-Handle. Set to:

0: when working with loadable firmware.

Queue handle returned by TLR_QUE_IDENTIFY():
when working with loadable firmware.

ulDestId UINT32 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

Set to 0, will not be changed

ulSrcId UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process. This variable may be
used for low-level addressing purposes.

ulLen UINT32 8 Packet Data Length (In Bytes)

ulId UINT32 0 ... 232-1 Packet Identification As Unique Number

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x00001A24 EIP_OBJECT_RESET_IND - Command / Response

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

tData - structure EIP_OBJECT_RESET_IND_T
ulDataIdx UINT32 Index of the service (host application does not need to

evaluate this parameter)

ulResetTyp UINT32 0..1, 100-199 Type of the reset

0: Reset is done emulating power cycling of the
device(default)

1: Return as closely as possible to the factory default
configuration. Reset is then done emulating power
cycling of the device.

100-199: Vendor specific

Table 90: EIP_OBJECT_RESET_IND – Reset Request from Bus Indication

The Application Interface 97/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Structure Reference
typedef struct EIP_OBJECT_PACKET_CONNECTION_RES_Ttag
{
 TLR_PACKET_HEADER_T tHead;
} EIP_OBJECT_PACKET_CONNECTION_RES_T;

Packet Description

Structure EIP_OBJECT_PACKET_RESET_RES_T Type: Response

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T
ulDest UINT32 See rules in

section 3.2.1
Destination Queue Handle

ulSrc UINT32 See rules in
section 3.2.1

Source Queue Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

ulSrcId UINT32 See rules in
section 3.2.1

Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 0 Packet Data Length (In Bytes)

ulId UINT32 0 ... 232-1 Packet Identification As Unique Number

ulSta UINT32 TLR_S_OK,
TLR_E_FAIL

See chapter Status/Error Codes Overview
TLR_S_OK – reset is accepted
TLR_E_FAIL – reset is denied

ulCmd UINT32 0x00001A25 EIP_OBJECT_RESET_RES – Response

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

Table 91: EIP_OBJECT_RESET_RES – Response to Indication to Reset Request

The Application Interface 98/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

4.2.2 Connection State Change Indication
This indication will be sent to the application task every time a connection is established, closed or
has timed out. This applies only to Exclusive Owner, Input Only and Listen Only connections.

Connection State - ulConnectionState

The variable ulConnectionState indicates whether a connection has been established or
closed.

ulConnectionState = Numeric
Value

Meaning

EIP_UNCONNECT 0 Connection was closed.

If connection timed out, the value of ulExtendedState will be 1,
otherwise 0.

EIP_CONNECTED 1 Connection has been established

Table 92: Meaning of variable ulConnectionState

Number of Exclusive Owner Connections – usNumExclusiveowner

Number of existing implicit exclusive owner connections.

Number of Input Only Connections – usNumInputOnly

Number of existing implicit input only connections.

Number of Listen Only Connections – usNumListenOnly

Number of existing implicit listen only connections.

Number of Explicit Messaging Connections – usNumExplicitMessaging

Number of existing explicit connections.

Connection Type - bConnType

The variable bConnType contains information about the connection type that was changed:

bConnType = Numeric
Value

Meaning

EIP_CONN_TYPE_CLASS_0_1_EXCLUSIVE_OWNER 1 Implicit exclusive owner connection

Reserved 2 Reserved for future use

EIP_CONN_TYPE_CLASS_0_1_LISTEN_ONLY 3 Implicit listen only connection

EIP_CONN_TYPE_CLASS_0_1_INPUT_ONLY 4 Implicit input only connection

EIP_CONN_TYPE_CLASS_3 5 Explicit connection

Table 93: Meaning of variable bConnType

Class to which the connection was directed - ulClass

For implicit connections (class0/1, Exclusive Owner, Input Only) the ulClass field is normally
0x04, which is the assembly object class ID.

For explicit connections the ulClass field is 0x02, which is the Message Router object class ID.

The Application Interface 99/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Instance of the connection path - ulInstance

For implicit connections it is the configuration connection point.
For explicit connections ulInstance is always 1.

Input connection point - ulOTConnPoints

Provides the connection point (assembly instance) in OT direction.

Output connection point – ulTOConnPoints

Provides the connection point (assembly instance) in TO direction.

Connection Serial Number – usConnSerialNum

Provides the originator serial number for this connection. This must be a unique 16-bit value. For
more details, see “The CIP Networks Library, Volume 1”, section 3-5.5.1.5.

Originator Vendor Id – usVendorId

Provides contains the Vendor ID of the connection originator (i.e. the contents of attribute #1 of
instance #1 of the connection originator’s Identity Object).

Originator Serial Number – ulOSerialNum

Provides the Serial Number of the connection originator (i.e. the contents of attribute #6 of instance
#1 of the connection originator’s Identity Object).

Priority/Tick Time – bPriority

Contains Priority and Tick Time. The time of the tick is calculated with 2^TickTime.

Bits 5-7 Bit 4 Bits 3-0

Reserved Priority
0 – Normal
1 - reserved

Tick Time

Table 94: Meaning of Variable bPriority

Time Out Tick Parameter – bTimeOutTicks

Contains the Time Out in ticks of the FwOpen command.

Timeout Multiplier - bTimeoutMultiple

Contains the value of the connection timeout multiplier, which is needed for the determination of
the connection timeout value. The connection timeout value is calculated by multiplying the RPI
value (requested packet interval) with the connection timeout multiplier. Transmission on a
connection is stopped when a timeout occurs after the connection timeout value calculated by this
rule. The multiplier is specified as a code according to the subsequent table:

Code Corresponding Multiplier

0 x4

1 x8

2 x16

The Application Interface 100/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Code Corresponding Multiplier

3 x32

4 x64

5 x128

6 x256

7 x512

8 - 255 Reserved
Table 95: Coding of Timeout Multiplier Values

Transport/Trigger – bTriggerType

Contains the trigger for the T->O connection and the connection transport class.

Bit 7 Bits 4-6 Bits 3-0

Direction
1 – Server
0 – Client

Trigger
0 – Cyclic
1 – Change of State
2 – Application Triggered

Connection Class
0 – Class 0
1 – Class 1
2 – Class 2
3 – Class 3

Table 96: Meaning of Variable bTriggerType

OT Connection ID – ulOTConnID

Contains the Connection ID for the Consumer Connection (i.e. from originator to target).

TO Connection ID – ulTOConnID

Contains the Connection ID for the Producer Connection (i.e. from target to originator).

OT Requested Packet Interval- ulOTRpi

Contains the requested packet interval for the consumer of the connection (OT direction). The
requested packet interval is the time between two subsequent packets (specified in units of
microseconds).

OT Connection Parameter - usOTConnParam
Contains the consumer connection parameter for the connection (OT direction).

The 16-bit word of the consumer connection parameter (connected to a Forward_Open
command) is structured as follows:

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bits 8-0

Redundant
Owner

Connection Type Reserved Priority Fixed
/Variable

Reserved

 Table 97: Meaning of Variable usOTConnParam

The values have the following meaning

 Fixed/Variable

This bit indicates whether the connection size is variable or fixed to the size specified as
connection size.

If fixed is chosen (bit is equal to 0), then the actual amount of data transferred in one
transmission is exactly the specified connection size.

The Application Interface 101/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

If variable is chosen (bit is equal to 1), the amount of data transferred in one single
 transmission may be the value specified as connection size or a lower value. This option is
currently not supported.

Note: The option „variable” is NOT supported.

 Priority

These two bits code the priority according to the following table:

Bit 11 Bit 10 Priority

0 0 Low priority

0 1 High priority

1 0 Scheduled

1 1 Urgent
 Table 98: Priority

 Connection Type

The connection type can be specified according to the following table:

Bit 30 Bit 29 Connection Type

0 0 Null – connection may be reconfigured

0 1 Multicast

1 0 Point-to-point connection

1 1 Reserved
 Table 99: Connection Type

Note: The option „Multicast” is only supported for connections with CIP transport
class 0 and class 1.

 Redundant Owner
The redundant owner bit is set if more than one owner of the connection should be allowed
(Bit 15 = 1). If bit 15 is equal to zero, then the connection is an exclusive owner connection.
Reserved fields should always be set to the value.

Note: Redundant Owner connections are not supported by the EtherNet/IP Stack.

OT Connection Size - usOTConnSize
Contains the size of the consuming data of the connection.

TO Requested Packet Interval- ulTORpi

Contains the requested packet interval for the producer (TO direction). The requested packet
interval is the time between two subsequent packets (specified in units of microseconds).

TO Connection Parameter - usTOConnParam
Similarly to usOTConnParam, contains the producer connection parameter for the connection (TO
direction).

The Application Interface 102/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

TO Connection Size - usTOConnSize
Contains the size of the producing data of the connection.

Production Inhibit Time - ulProInhib
Contains the production inhibit time

Extended State – ulExtendedState

The extended state has additional information about the connection. This value is only used when
ulConnectionState is EIP_UNCONNECT

ulConnectionState = Numeric
Value

Meaning

If (ulConnectionState == EIP_UNCONNECT)

EIP_CONN_STATE_UNDEFINED 0 No extended state available

EIP_CONN_STATE_TIMEOUT 1 Connection closed by timeout

If (ulConnectionState == EIP_CONNECT)

EIP_CONN_STATE_UNDEFINED 0 No extended state available
Table 100: Priority

Figure 14 below displays a sequence diagram for the EIP_OBJECT_CONNECTION_IND/RES
packet.

Figure 14: Sequence Diagram for the EIP_OBJECT_CONNECTION_IND/RES Packet for the Stack Packet Set

The Application Interface 103/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Structure Reference
typedef struct EIP_OBJECT_CONNECTION_IND_Ttag
{
 TLR_UINT32 ulConnectionState;

 uint16_t usNumExclusiveOwner;
 uint16_t usNumInputOnly;
 uint16_t usNumListenOnly;
 uint16_t usNumExplicitMessaging;

 uint8_t bConnType;
 uint8_t abReserved[3];

 uint32_t ulClass;
 uint32_t ulInstance;
 uint32_t ulOTConnectionPoints;
 uint32_t ulTOConnectionPoints;

 uint16_t usConnSerialNum;
 uint16_t usVendorId;
 uint32_t ulOSerialNum;

 uint8_t bPriority;
 uint8_t bTimeOutTicks;
 uint8_t bTimeoutMultiple;
 uint8_t bTriggerType;

 uint32_t ulOTConnID;
 uint32_t ulTOConnID;

 uint32_t ulOTRpi;
 uint16_t usOTConnParam;
 uint16_t usOTConnSize;
 uint32_t ulTORpi;
 uint16_t usTOConnParam;
 uint16_t usTOConnSize;

 uint32_t ulProInhib;

 TLR_UINT32 ulExtendedState;
} EIP_OBJECT_CONNECTION_IND_T;

#define EIP_OBJECT_CONNECTION_IND_SIZE \
 sizeof(EIP_OBJECT_CONNECTION_IND_T)

typedef struct EIP_OBJECT_PACKET_CONNECTION_IND_Ttag {
 TLR_PACKET_HEADER_T tHead;
 EIP_OBJECT_CONNECTION_IND_T tData;
} EIP_OBJECT_PACKET_CONNECTION_IND_T;

The Application Interface 104/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Description

Structure EIP_OBJECT_PACKET_CONNECTION_IND_T Type: Indication

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination Queue-Handle. Set to

0: Destination is operating system rcX
32 (0x20): Destination is the protocol stack

ulSrc UINT32 Source Queue-Handle. Set to:

0: when working with loadable firmware.

Queue handle returned by TLR_QUE_IDENTIFY():
when working with loadable firmware.

ulDestId UINT32 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

Set to 0, will not be changed

ulSrcId UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process. This variable may be
used for low-level addressing purposes.

ulLen UINT32 76 EIP_OBJECT_CONNECTION_IND – Packet data length
in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by
the Source Process of the Packet

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x1A2E EIP_OBJECT_CONNECTION_IND - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons

ulRout UINT32 X Routing, do not touch

tData - Structure EIP_OBJECT_CONNECTION_IND_T

ulConnectionState UINT32 0, 1 Reason of changing the connection state

Connection established (1)
Connection disconnected (0)

usNumExclusiveOwner UINT16 Number of established exclusive owner connections

usNumInputOnly UINT16 Number of established input only connections

usNumListenOnly UINT16 Number of established listen only connections

usNumExplicitMessaging UINT16 Number of established explicit connections

bConnType UINT8 1-5 Connection Type:

1 - Exclusive Owner
3 – Listen Only
4 – Input Only
5 – Explicit Messaging

abReserved UINT8[3] 0 Reserved. Always set to 0.

ulClass UINT32 Class to which the connection was directed

ulInstance UINT32 Corresponding class instance

ulOTConnectionPoints UINT32 Output connection point

ulTOConnectionPoints UINT32 Input connection point

usConnSerialNum UINT16 Serial number of the connection

The Application Interface 105/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Structure EIP_OBJECT_PACKET_CONNECTION_IND_T Type: Indication

usVendorId UINT16 Originator vendor id

ulOSerialNum UINT32 Originator serial number

bPriority UINT8 Priority/Tick Time

bTimeOutTicks UINT8 Message timeout

bTimeoutMultiple UINT8 Time out multiplier

bTriggerType UINT8 Class/Trigger type

ulOTConnID UINT32 O->T Connection ID

ulTOConnID UINT32 T->O ConnectionID

ulOTRpi UINT32 O->T requested packet interval

usOTConnParam UINT16 O->T Connection parameter

usOTConnSize UINT16 O->T data size

ulTORpi UINT32 T->O requested packet interval

usTOConnParam UINT16 T->O Connection parameter

usTOConnSize UINT16 T->O data size

ulProInhib UINT32 Producer inhibit time

ulExtendedState UINT32 0: No extended status
1: Connection timeout

Table 101: EIP_OBJECT_CONNECTION_IND – Indication of Connection

The Application Interface 106/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Structure Reference
 struct EIP_OBJECT_PACKET_CONNECTION_RES_Ttag
{
 TLR_PACKET_HEADER_T tHead;
};

Packet Description

Structure EIP_OBJECT_PACKET_CONNECTION_RES_T Type: Response

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T
ulDest UINT32 See rules in

section 3.2.1
Destination Queue Handle

ulSrc UINT32 See rules in
section 3.2.1

Source Queue Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination Queue Reference

ulSrcId UINT32 See rules in
section 3.2.1

Source Queue Reference

ulLen UINT32 0 Packet Data Length (In Bytes)

ulId UINT32 0 ... 232-1 Packet Identification As Unique Number

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x00001A2F Command / Response

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

Table 5: EIP_OBJECT_CONNECTION_RES – Response to indication of Connection

The Application Interface 107/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

4.2.3 Indication of acyclic Data Transfer
This packet indicates an acyclic service coming from the network. It will only be received if:

 an additional object class has been registered using the command
EIP_OBJECT_MR_REGISTER_REQ/CNF (see section 4.1.4 on page 65 of this document)

 or a service has been registered for an existing object using
EIP_OBJECT_REGISTER_SERVICE_REQ/CNF (see section 4.1.7 on page 79 of this
document)

It delivers the following parameters:

 the OT connection ID of the class 3 connection, in case the service request is bound to a
class 3 connection (connected)

 a CIP Service Code

 the CIP Object Class ID

 the CIP Instance number

 the CIP Attribute number

 an array containing unstructured data (depending on the service code)

 the sequence count in case this service was sent over a class 3 connection (see ulSrcId of
packet header)

The parameters service code, class ID, instance and attribute correspond to the normal CIP
Addressing. These fields are used for the most common services that use the addressing format
“Service  Class  Instance  Attribute”. In case the service uses another format, the path
information is put into the data part (abData[]) of this packet.

The data segment abData[] may not be present for services that do not need data sent along with
the request (e.g. Get services). The ulLen field of the packet header can be evaluated to determine
whether there is data available.

 service_data_size = tHead.ulLen - EIP_OBJECT_CL3_SERVICE_IND_SIZE

The parameter ulService holds the requested CIP service that shall be applied to the object
instance selected by the variables ulObject and ulInstance of the indication packet.

CIP services are divided into different address ranges. The subsequent Table 102: Specified
Ranges of numeric Values of Service Codes (Variable ulService) gives an overview. This table is
taken from the CIP specification (“Volume 1 Common Industrial Protocol Specification Chapter 4,
Table 4-9.6”, see reference [3]).

The Application Interface 108/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Range of numeric value
of service code
(variable ulService)

Meaning

0x00-0x31 Open. The services associated with this range of service codes are referred to as
Common Services. These are defined in Appendix A of the CIP Networks Library, Volume
1 (reference #3).

0x32-0x4A Range for service codes for vendor specific services

0x4B-0x63 Range for service codes for object class specific services

0x64-0x7F Reserved by ODVA for future use

0x80-0xFF Reserved for use as Reply Service Code (see Message Router Response Format in
Chapter 2 of reference [4])

0x0100-0xFFFF Hilscher specific services to manage objects from application side.
Table 102: Specified Ranges of numeric Values of Service Codes (Variable ulService)

Note: Not every service is available on every object.

If you use Class IDs that are in the Vendor Specific range, use need to define by yourself
what services and attributes are supported by this object class.

If you use Class IDs that are not in the Vendor Specific range, the CIP specification
describes all required and optional services and attributes the class supports.

Depending on this the host application must implement the handling of incoming
services.

Table 103: Service Codes for the Common Services according to the CIP specification lists the
service codes for the Common Services. This table is taken from the CIP specification (“Volume 1
Common Industrial Protocol Specification Chapter 5, Table 5-1.1”, see reference [3]).

Service code (numeric value of
ulService)

Service to be executed

00 Reserved

01 Get_Attributes_All

02 Set_Attributes_All

03 Get_Attribute_List

04 Set_Attribute_List

05 Reset

06 Start

07 Stop

08 Create

09 Delete

0A Multiple_Service_Packet

0B Reserved for future use

0D Apply_Attributes

0E Get_Attribute_Single

The Application Interface 109/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Service code (numeric value of
ulService)

Service to be executed

0F Reserved for future use

10 Set_Attribute_Single

11 Find_Next_Object_Instance

12-13 Reserved for future use

14 Error Response (used by DevNet only)

15 Restore

16 Save

17 No Operation (NOP)

18 Get_Member

19 Set_Member

1A Insert_Member

1B Remove_Member

1C GroupSync

1D-31 Reserved for additional Common Services

Table 103: Service Codes for the Common Services according to the CIP specification

Depending on what services, instances and attributes are supported by the addressed object, the
host application must answer the service with either success or with an appropriate error code.

Therefore, the response packet holds two error fields: ulGRC and ulERC

The Generic Error Code (ulGRC) can be used to indicate whether the service request could be
processed successfully or not. A list of all possible codes is provided in section 5.2“General
EtherNet/IP Error Codes” of this document.

The Application Interface 110/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The most common General Error Codes are:

General Status Code
(specified hexadecimally)

Status Name Description

00 Success The service has successfully been performed by the specified
object.

05 Path destination
unknown

The path references an unknown object class, instance or
structure element causing the abort of path processing.

08 Service not
supported

The requested service has not been implemented or has not
been defined for this object class or instance.

09 Invalid attribute value Detection of invalid attribute data
0A Attribute list error An attribute in the Get_Attribute_List or Set_Attribute_List

response has a status not equal to 0.

0C Object state conflict The object is not able to perform the requested service in the
current mode or state

0E Attribute not settable Attempt to change a non-modifiable attribute.
10 Device state conflict The current mode or state of the device prevents the execution

of the requested service.
13 Not enough data The service did not supply all required data to perform the

specified operation.
14 Attribute not

supported
An unsupported attribute has been specified in the request

15 Too much data More data than was expected were supplied by the service.
1F Vendor specific error A vendor specific error has occurred. This error should only

occur when none of the other general error codes can correctly
be applied.

20 Invalid parameter A parameter which was associated with the request was invalid.
The parameter does not meet the requirements of the CIP
specification and/or the requirements defined in the specification
of an application object.

 Table 104: Most common General Status Codes

The Extended Error Code (ERC) can be used to describe the occurred error having already been
classified by the generic error code in more detail.

If the service will be answered with success, additional data can be sent with the reply in the
abData field. The byte size of the data must be added to the basic packet length
(EIP_OBJECT_CL3_SERVICE_RES_SIZE) in the ulLen field of the packet header.

Figure 9 below displays a sequence diagram for the EIP_OBJECT_CL3_SERVICE_IND/RES
packet in case the host application uses the Extended or Stack Packet Set (see 3.2 “Configuration
Using the Packet API”).

The Application Interface 111/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Figure 15: Sequence Diagram for the EIP_OBJECT_CL3_SERVICE_IND/RES Packet for the Stack Packet Set

Optional sequence count handling:

In case the received service indication is based on a class 3 connection, the ulSrcId field of the
packet header provides the sequence count of that specific service request. The sequence count is
usually used to detect delivery of duplicate data packets. However, the originator of the connection
can also resend a service with the same sequence count for example to maintain the connection.

The host application is not required to handle the sequence count at all. It can handle all
indications just as if the sequence count is different from service to service. It depends on the
behavior of the object the host application implements.

The following use cases illustrate different situations and at the same time show how the host
application can handle service indications.

Use
case

Messaging
Type

Description

1 Unconnected

(see Figure
16)

No sequence count available. Therefore no special handling possible

Client sends a service request
Server sends a service response

Client sends a service request
Server sends a service response

…

The Application Interface 112/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

2 Connected

(see Figure
17)

Normal communication (The sequence count changes from service indication to service
indication):

Client sends a service request with sequence count x
Server sends a service response with sequence count x

Client sends a service request with sequence count x+1
Server sends a service response with sequence count x+1

Client sends a service request with sequence count x+2
Server sends a service response with sequence count x+2

…

3 Connected

(Figure 18)

Lost packets:

Client sends a service request with sequence count x
Server sends a service response with sequence count x

Client sends a service request with sequence count x+1, but server does not receive the
packet

Client sends a service request with sequence count x+1
Server sends a service response with sequence count x+1

Client sends a service request with sequence count x+2
Server sends a service response with sequence count x+2, but client does not receive the
packet

Client sends a service request with sequence count x+2
Server sends a service response with sequence count x+2

4 Connected

(see Figure
19)

Client maintains the connection:

Client sends a service request with sequence count x
Server sends a service response with sequence count x

Client sends a service request with sequence count x (too keep the connection alive)
Server sends a service response with sequence count x (too keep the connection alive)

Client sends a service request with sequence count x (too keep the connection alive)
Server sends a service response with sequence count x (too keep the connection alive) .

…

Client sends a service request with sequence count x (too keep the connection alive)
Server sends a service response with sequence count x (too keep the connection alive)

Client sends a service request with sequence count x+1
Server sends a service response with sequence count x+1

 Table 105: Service Indication Use Cases and Sequence Count Handling

The Application Interface 113/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Figure 16: Sequence Diagram for the EIP_OBJECT_CL3_SERVICE_IND/RES (Sequence Count Handling– Use case 1)

The Application Interface 114/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Figure 17: Sequence Diagram for the EIP_OBJECT_CL3_SERVICE_IND/RES (Sequence Count Handling– Use case 2)

The Application Interface 115/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Figure 18: Sequence Diagram for the EIP_OBJECT_CL3_SERVICE_IND/RES (Sequence Count Handling – Use case 3)

The Application Interface 116/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Figure 19: Sequence Diagram for the EIP_OBJECT_CL3_SERVICE_IND/RES (Sequence Count Handling– Use case 4)

The Application Interface 117/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Structure Reference
 typedef struct EIP_OBJECT_CL3_SERVICE_IND_Ttag
{
 TLR_UINT32 ulConnectionId; /*!< Connection Handle */
 TLR_UINT32 ulService;
 TLR_UINT32 ulObject;
 TLR_UINT32 ulInstance;
 TLR_UINT32 ulAttribute;
 TLR_UINT8 abData[1];
} EIP_OBJECT_CL3_SERVICE_IND_T;

typedef struct EIP_OBJECT_PACKET_CL3_SERVICE_IND_Ttag
{
 TLR_PACKET_HEADER_T tHead;
 EIP_OBJECT_CL3_SERVICE_IND_T tData;
} EIP_OBJECT_PACKET_CL3_SERVICE_IND_T;

#define EIP_OBJECT_CL3_SERVICE_IND_SIZE (sizeof(EIP_OBJECT_CL3_SERVICE_IND_T)-1)

The Application Interface 118/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Description

Structure EIP_OBJECT_PACKET_CL3_SERVICE_IND_T Type: Indication

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination Queue-Handle. Set to

0: Destination is operating system rcX

32 (0x20): Destination is the protocol stack

ulSrc UINT32 Source Queue-Handle. Set to:

0: when working with loadable firmware.

Queue handle returned by TLR_QUE_IDENTIFY():
when working with loadable firmware.

ulDestId UINT32 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

Set to 0, will not be changed

ulSrcId UINT32 Holds the sequence count of the service request in case
the service is based on a class 3 connection
(tData.ulConnectionId != 0).

ulSrcId is always 0 for unconnected service request.

(see sequence diagrams in Figure 16, Figure 17, Figure
18 and Figure 19)

ulLen UINT32 20 + n Packet Data Length (In Bytes)

n = Length of Service Data Area

ulId UINT32 0 ... 232-1 Packet Identification As Unique Number

ulSta UINT32 See Packet Structure Reference

ulCmd UINT32 0x1A3E EIP_OBJECT_CL3_SERVICE_IND - Command /
Response

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

tData - Structure EIP_OBJECT_CL3_SERVICE_IND_T
ulConnectionId UINT32 0 ... 232-1 Uncial number of the request

ulService UINT32 1-0xFFFF CIP Service Code

ulObject UINT32 1-0xFFFF CIP Class ID

ulInstance UINT32 1-0xFFFF CIP Instance Number

ulAttribute UINT32 0-0xFFFF CIP Attribute Number

The attribute number is 0, if the service does not
address a specific attribute but the whole instance.

abData[] UINT8[n] n bytes of service data (depending on service)

This may also contain path information for instance in
case that the service does not address an object with
the format Class / Instance / Attribute.

Table 106: EIP_OBJECT_CL3_SERVICE_IND - Indication of acyclic Data Transfer

The Application Interface 119/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Structure Reference
 typedef struct EIP_OBJECT_CL3_SERVICE_RES_Ttag
{
 TLR_UINT32 ulConnectionId; /*!< Connection Handle */
 TLR_UINT32 ulService;
 TLR_UINT32 ulObject;
 TLR_UINT32 ulInstance;
 TLR_UINT32 ulAttribute;
 TLR_UINT32 ulGRC; /*!< Generic Error Code */
 TLR_UINT32 ulERC; /*!< Extended Error Code */
 TLR_UINT8 abData[1];
}EIP_OBJECT_CL3_SERVICE_RES_T;

typedef struct EIP_OBJECT_PACKET_CL3_SERVICE_RES_Ttag
{
 TLR_PACKET_HEADER_T tHead;
 EIP_OBJECT_CL3_SERVICE_RES_T tData;
} EIP_OBJECT_PACKET_CL3_SERVICE_RES_T;

#define EIP_OBJECT_CL3_SERVICE_RES_SIZE (sizeof(EIP_OBJECT_CL3_SERVICE_RES_T)-1)

Packet Description

Structure EIP_OBJECT_PACKET_CL3_SERVICE_RES_T Type: Response

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T
ulDest UINT32 See rules in

section 3.2.1
Destination Queue Handle

ulSrc UINT32 See rules in
section 3.2.1

Source Queue Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

ulSrcId UINT32 See rules in
section 3.2.1

Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 28 + n Packet Data Length (In Bytes)
where n = Length of Service Data Area

ulId UINT32 0 ... 232-1 Packet Identification As Unique Number

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x00001A3F EIP_OBJECT_CL3_SERVICE_RES - Command /
Response

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

tData - Structure EIP_OBJECT_CL3_SERVICE_RES_T
ulConnectionId UINT32 0 ... 232-1 Unique Id from the indication packet

ulService UINT32 1-0xFFFF CIP Service Code from the indication packet

ulObject UINT32 1-0xFFFF CIP Object from the indication packet

ulInstance UINT32 1-0xFFFF CIP Instance from the indication packet

ulAttribute UINT32 0-0xFFFF CIP Attribute from the indication packet

ulGRC UINT32 Generic Error Code

ulERC UINT32 Extended Error Code

abData[] Array of UINT8 n bytes of service data (depending on service)

Table 107: EIP_OBJECT_CL3_SERVICE_RES – Response to Indication of acyclic Data Transfer

The Application Interface 120/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

4.2.4 CIP Object Change Indication
This indication will be received by the host application when a CIP object attribute is changed/set
by service from the network.

For detailed information about how to handle this indication see section 3.3 “Example Configuration
Process”

For configuration examples please refer to the example code SetConfigExample and
ExtendedConfigExample.

Handling of Configuration Data Changes”.

Figure 20 below displays a sequence diagram for the
EIP_OBJECT_CIP_OBJECT_CHANGE_IND/RES packet in case the host application uses the
Basic, Extended or Stack Packet Set (see 3.2 “Configuration Using the Packet API”).

Figure 20: Sequence Diagram for the EIP_OBJECT_CIP_OBJECT_CHANGE_IND/RES Packet for the Stack Packet Set

Packet Structure Reference
typedef struct EIP_OBJECT_CIP_OBJECT_CHANGE_IND_Ttag
{
 TLR_UINT32 ulInfoFlags; /*!< Information flags */
 TLR_UINT32 ulService; /*!< CIP service code */
 TLR_UINT32 ulClass; /*!< CIP class ID */
 TLR_UINT32 ulInstance; /*!< CIP instance number */
 TLR_UINT32 ulAttribute; /*!< CIP attribute number */
 TLR_UINT8 abData[EIP_OBJECT_MAX_PACKET_LEN]; /*!< Service Data */
} EIP_OBJECT_CIP_OBJECT_CHANGE_IND_T;

typedef struct EIP_OBJECT_PACKET_CIP_OBJECT_CHANGE_IND_Ttag
{
 TLR_PACKET_HEADER_T tHead;
 EIP_OBJECT_CIP_OBJECT_CHANGE_IND_T tData;
} EIP_OBJECT_PACKET_CIP_OBJECT_CHANGE_IND_T;

#define EIP_OBJECT_CIP_OBJECT_CHANGE_IND_SIZE (sizeof(EIP_OBJECT_CIP_OBJECT_CHANGE_IND_T) -
EIP_OBJECT_MAX_PACKET_LEN)

The Application Interface 121/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Description

structure EIP_OBJECT_PACKET_CIP_OBJECT_CHANGE_IND_T

Type: Indication

Area Variable Type Value / Range Description

tHead structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination Queue-Handle

ulSrc UINT32 Source Queue-Handle

ulDestId UINT32 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process. Set
to 0 for the Initialization Packet

ulSrcId UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 20+n Packet Data Length in bytes
n = Number of bytes in abData[]

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by the
Source Process of the Packet

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x1AFA EIP_OBJECT_CIP_OBJECT_CHANGE_IND - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 x Routing, do not touch

tData structure EIP_OBJECT_CIP_OBJECT_CHANGE_IND_T

ulInfoFlags UINT32 reserved

ulService UINT32 0x10 CIP service code

Currently only the SetAttributeSingle service is used in
this indication.

ulClass UINT32 CIP class ID

ulInstance UINT32 CIP instance number

ulAttribute UINT32 CIP attribute number

abData[] UINT8 Attribute Data

Number of bytes n provided in abData =

tHead.ulLen -
EIP_OBJECT_CIP_OBJECT_CHANGE_IND_SIZE

Table 108: EIP_OBJECT_CIP_OBJECT_CHANGE_IND – CIP Object Change Indication

Packet Structure Reference
typedef struct EIP_OBJECT_PACKET_CIP_OBJECT_CHANGE_RES_Ttag
{
 TLR_PACKET_HEADER_T tHead;
} EIP_OBJECT_PACKET_CIP_OBJECT_CHANGE_RES_T;

#define EIP_OBJECT_CIP_OBJECT_CHANGE_RES_SIZE 0

The Application Interface 122/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Description

structure EIP_OBJECT_PACKET_CIP_OBJECT_CHANGE_RES_T

Type: Response

Area Variable Type Value / Range Description

tHead structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination Queue-Handle

ulSrc UINT32 Source Queue-Handle

ulDestId UINT32 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process. Set
to 0 for the Initialization Packet

ulSrcId UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 0 Packet Data Length in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by the
Source Process of the Packet

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x1AFB EIP_OBJECT_CIP_OBJECT_CHANGE_RES - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 x Routing, do not touch

Table 109: EIP_OBJECT_CIP_OBJECT_CHANGE_RES – Response to CIP Object Change Indication

The Application Interface 123/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

4.2.5 Link Status Change
This indication informs the application about the current Link status. This is informative for the
application. Information from any earlier received Link Status Changed Indication is invalid at this
point of time.

Note:

This indication is also sent directly after the host application has registered at the
EtherNet/IP Stack (RCX_REGISTER_APP_REQ – 0x2F10).

Packet Structure Reference
typedef struct RCX_LINK_STATUS_Ttag
{
 TLR_UINT32 ulPort; /*!< Port number\n\n
 \valueRange \n
 0: Port 1 \n
 1: Port 2 */

 TLR_BOOLEAN fIsFullDuplex; /*!< Duplex mode\n\n
 \valueRange \n
 0: Half duplex \n
 1: Full Duplex */

 TLR_BOOLEAN fIsLinkUp; /*!< Link status\n\n
 \valueRange \n
 0: Link is down \n
 1: Link is up */

 TLR_UINT32 ulSpeed; /*!< Port speed\n\n
 \valueRange \n
 0: (No link) \n
 10: 10MBit \n
 100: 100MBit \n */
} RCX_LINK_STATUS_T;

typedef struct RCX_LINK_STATUS_CHANGE_IND_DATA_Ttag
{
 RCX_LINK_STATUS_T atLinkData[2]; /*!< Link status data */

} RCX_LINK_STATUS_CHANGE_IND_DATA_T;

typedef struct RCX_LINK_STATUS_CHANGE_IND_Ttag
{
 TLR_PACKET_HEADER_T tHead;
 RCX_LINK_STATUS_CHANGE_IND_DATA_T tData;
} RCX_LINK_STATUS_CHANGE_IND_T;

#define RCX_LINK_STATUS_CHANGE_IND_SIZE (sizeof(RCX_LINK_STATUS_CHANGE_IND_DATA_T))

Packet Description

Structure RCX_LINK_STATUS_CHANGE_IND_T Type: Indication

Area Variable Type Value /
Range

Description

Head structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of application task process queue

ulSrc UINT32 Source queue handle of AP-task process queue

ulDestId UINT32 0 Destination End Point Identifier not in use, set to zero for
compatibility reasons

ulSrcId UINT32 0 ... 232 -1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

The Application Interface 124/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Structure RCX_LINK_STATUS_CHANGE_IND_T Type: Indication

Area Variable Type Value /
Range

Description

ulLen UINT32 32 Packet data length in bytes

ulId UINT32 0 ... 232 -1 Packet identification as unique number generated by the source
process of the packet

ulSta UINT32 0 Status not in use for indication.

ulCmd UINT32 0x2FA8 RCX_LINK_STATUS_CHANGE_IND-command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 x Routing, do not touch

Data structure RCX_LINK_STATUS_CHANGE_IND_DATA_T

atLinkData[2] RCX_LINK_
STATUS_T

 Link status information for two ports.
If only one port is available, ignore second entry.

Table 110: RCX_LINK_STATUS_CHANGE_IND_T - Link Status Change Indication

structure RCX_LINK_STATUS_T

Area Variable Type Value / Range Description

 ulPort UINT32 0, 1 The port-number this information belongs to.

fIsFullDuplex BOOL32 FALSE (0)

TRUE

Is the established link full Duplex? Only valid if fIsLinkUp is
TRUE.

 fIsLinkUp BOOL32 FALSE (0)

TRUE

Is the link up for this port?

 ulSpeed UINT32 0, 10 or 100 If the link is up, this field contains the speed of the established
link. Possible values are 10 (10 MBit/s), 100 (100MBit/s) and 0
(no link).

Table 111: Structure RCX_LINK_STATUS_CHANGE_IND_DATA_T

The Application Interface 125/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Structure Reference
typedef struct RCX_LINK_STATUS_CHANGE_RES_Ttag
{
 TLR_PACKET_HEADER_T tHead;
} RCX_LINK_STATUS_CHANGE_RES_T;

#define RCX_LINK_STATUS_CHANGE_RES_SIZE (0)

Packet Description

Structure RCX_LINK_STATUS_CHANGE_RES_T Type: Response

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of application task process

queue

ulSrc UINT32 Source Queue-Handle

ulDestId UINT32 0 Destination End Point Identifier

ulSrcId UINT32 0 ... 232 -1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process.

ulLen UINT32 0 Packet data length in bytes. Depends on number of
parameters

ulId UINT32 0 ... 232 -1 Packet identification as unique number generated by
the source process of the packet

ulSta UINT32 Status not used for request.

ulCmd UINT32 0x2FA9 RCX_LINK_STATUS_CHANGE_RES – Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons

ulRout UINT32 x Routing, do not touch

Table 112: RCX_LINK_STATUS_CHANGE_RES_T - Link Status Change Response

The Application Interface 126/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

4.2.6 Forward_Open Indication

Note:

This functionality must be enabled by setting the Parameter flag
EIP_OBJECT_PRM_FWRD_OPEN_CLOSE_FORWARDING using command
EIP_OBJECT_SET_PARAMETER_REQ (0x00001AF2).

This indication will be sent to the host application when a Forward_Open request has been
received by the protocol stack from the network. The protocol stack forwards the Forward_Open
request without performing any processing on it. The host application now has the possibility to
check/modify parameters and/or attach “Application Reply“ data. Such “Application Reply” data will
be sent to the originator by attaching it to the Forward_Open response message.

Upon reception of the EIP_OBJECT_FWD_OPEN_FWD_RES packet, the protocol stack processes
the Forward_Open request data that comes with this response packet. It will be handled as if it
directly came from the network. After checking parameters and initializing the corresponding
resources, the protocol stack sends the indication
EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND to give feedback to the host application
whether or not the connection could be established.

The host application also has the possibility to reject the Forward_Open request right away by
setting the corresponding status field in the EIP_OBJECT_FWD_OPEN_FWD_RES packet.

For an overview of the possible packet sequences see Figure 21.

To attach “Application Reply” data, just add these at the end of the connection path (abConnPath)
within the Forward_Open data and set the size and offset (ulAppReplyOffset,
ulAppReplySize) correspondingly.

The Application Interface 127/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Figure 21: Packet sequence for Forward_Open forwarding functionality

The Application Interface 128/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Structure Reference

 #define EIP_DEFAULT_PATH_LEN 16

 typedef struct EIP_CM_LARGEFWOPEN_REQ_Ttag
 {
 uint8_t bPriority; /* used to calculate request timeout information */
 uint8_t bTimeOutTicks; /* used to calculate request timeout information */
 uint32_t ulOTConnID; /* Network connection ID originator to target */
 uint32_t ulTOConnID; /* Network connection ID target to originator */
 uint16_t usConnSerialNum; /* Connection serial number */
 uint16_t usVendorId; /* Originator Vendor ID */
 uint32_t ulOSerialNum; /* Originator serial number */
 uint8_t bTimeoutMultiple; /* Connection timeout multiple */
 uint8_t abReserved1[3]; /* reserved */
 uint32_t ulOTRpi; /* Originator to target requested packet rate in us */
 uint32_t ulOTConnParam; /* Originator to target connection parameter */
 uint32_t ulTORpi; /* target to originator requested packet rate in us */
 uint32_t ulTOConnParam; /* target to originator connection parameter */
 uint8_t bTriggerType; /* Transport type/trigger */
 uint8_t bConnPathSize; /* Connection path size */
 uint8_t bConnPath[EIP_DEFAULT_PATH_LEN]; /* connection path */
 } EIP_CM_LARGEFWOPEN_REQ_T;

/* Deliver Forward Open to host application */
typedef struct EIP_OBJECT_LFWD_OPEN_FWD_IND_Ttag
{
 TLR_VOID* pRouteMsg; /* Link to remember underlying Encapsulation
 request (must not be modified by app) */
 TLR_UINT32 aulReserved[4]; /* Place holder to be filled by response
 parameters, see EIP_OBJECT_LFWD_OPEN_FWD_RES_T */
 EIP_CM_LARGEFWOPEN_REQ_T tFwdOpenData; /* Forward Open request data to be delivered to
 host */
} EIP_OBJECT_LFWD_OPEN_FWD_IND_T;

typedef struct EIP_OBJECT_PACKET_LFWD_OPEN_FWD_IND_Ttag
{
 TLR_PACKET_HEADER_T tHead;
 EIP_OBJECT_LFWD_OPEN_FWD_IND_T tData;
} EIP_OBJECT_PACKET_LFWD_OPEN_FWD_IND_T;

#define EIP_OBJECT_LFWD_OPEN_FWD_IND_SIZE (sizeof(EIP_OBJECT_LFWD_OPEN_FWD_IND_T) -
 EIP_OBJECT_MAX_PACKET_LEN)

The Application Interface 129/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Description

Structure EIP_OBJECT_PACKET_LFWD_OPEN_FWD_IND_T Type: Indication

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T
ulDest UINT32 0x20/

DPMINTF_QUE
Destination Queue-Handle

ulSrc UINT32 0 ... 232-1 Source Queue-Handle
ulDestId UINT32 Destination End Point Identifier, specifying the final

receiver of the packet within the Destination Process. Set
to 0 for the Initialization Packet

ulSrcId UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 60 + n EIP_OBJECT_LFWD_OPEN_FWD_IND_SIZE + n -
Packet Data Length in bytes
n: Length of connection path (abConnPath) in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by the
Source Process of the Packet

ulSta UINT32 Status
ulCmd UINT32 0x1A60 EIP_OBJECT_LFWD_OPEN_FWD_IND - Command
ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 x Routing, do not touch

tData - Structure EIP_OBJECT_LFWD_OPEN_FWD_IND_T
pRouteMsg TLR_VOID* Pointer to remember the underlying encapsulation request

(must not be modified by app)
aulReserved[4] TLR_UINT32 Placeholder to be filled by response parameters, see

EIP_OBJECT_LFWD_OPEN_FWD_RES_T
tFwdOpenData EIP_CM_LARGEF

WOPEN_REQ_T
 Forward Open data (See Table 114)

Table 113:EIP_OBJECT_LFWD_OPEN_FWD_IND – Forward_Open indication

The Application Interface 130/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The following Table 114 explains the structure EIP_CM_APP_LFWOPEN_IND_T:

Structure EIP_CM_APP_LFWOPEN_IND_T

 Description
bPriority TLR_UINT8 Used to calculate request timeout information
bTimeOutTicks TLR_UINT8 Used to calculate request timeout information
ulOTConnID TLR_UINT32 Network connection ID originator to target
ulTOConnID TLR_UINT32 Network connection ID target to originator
usConnSerialNum TLR_UINT16 Connection serial number
usVendorId TLR_UINT16 Originator Vendor ID
ulOSerialNum TLR_UINT32 Originator serial number
bTimeoutMultiple TLR_UINT8 Connection timeout multiplier
abReserved1[3] TLR_UINT8 Reserved
ulOTRpi TLR_UINT32 Originator to target requested packet rate in

microseconds
usOTConnParam TLR_UINT16 Originator to target connection parameter
ulTORpi TLR_UINT32 Target to originator requested packet rate in

microseconds
usTOConnParam TLR_UINT16 Target to originator connection parameter
bTriggerType TLR_UINT8 Transport type/trigger
bConnPathSize TLR_UINT8 Connection path size in 16 bit words
abConnPath[EIP_DEFAULT_PATH_LEN] TLR_UINT8 Connection path

Table 114: EIP_CM_APP_LFWOPEN_IND_T - Forward_Open request data

For more information on almost all of these parameters, see section 4.2.2“Connection State
Change Indication”.

The Application Interface 131/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Structure Reference
typedef struct EIP_OBJECT_LFWD_OPEN_FWD_RES_Ttag
{
 TLR_VOID* pRouteMsg;
 TLR_UINT32 ulGRC;
 TLR_UINT32 ulERC;
 TLR_UINT32 ulAppReplyOffset;
 TLR_UINT32 ulAppReplySize;
 EIP_CM_LARGEFWOPEN_REQ_T tFwdOpenData;
} EIP_OBJECT_LFWD_OPEN_FWD_RES_T;

typedef struct EIP_OBJECT_PACKET_LFWD_OPEN_FWD_RES_Ttag
{
 TLR_PACKET_HEADER_T tHead;
 EIP_OBJECT_LFWD_OPEN_FWD_RES_T tData;
} EIP_OBJECT_PACKET_LFWD_OPEN_FWD_RES_T;

#define EIP_OBJECT_LFWD_OPEN_FWD_RES_SIZE sizeof(EIP_OBJECT_LFWD_OPEN_FWD_RES_T) – \

 EIP_OBJECT_MAX_PACKET_LEN

Packet Description

structure EIP_OBJECT_PACKET_LFWD_OPEN_FWD_RES_T Type: Response

Variable Type Value / Range Description

tHead - Structure TLR_PACKET_HEADER_T
ulDest UINT32 0x20/

DPMINTF_
QUE

Destination Queue Handle

ulSrc UINT32 0 ... 232-1 Source Queue Handle
ulDestId UINT32 Destination Queue Reference
ulSrcId UINT32 Source Queue Reference
ulLen UINT32 60 + n EIP_OBJECT_FWD_OPEN_FWD_RES_SIZE + n - Packet Data

Length in bytes
n: Length of connection path (abConnPath) in bytes +
 Length of “Application Reply” data in abConnPath

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by the
Source Process of the Packet

ulSta UINT32 Status
ulCmd UINT32 0x1A61 EIP_OBJECT_LFWD_OPEN_FWD_RES - Command
ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 x Routing, do not touch

tData - Structure EIP_OBJECT_LFWD_OPEN_FWD_IND_T
pRouteMsg TLR_VOID* Pointer to underlying Encapsulation request
ulGRC TLR_UINT32 General Error Code, see Table 83: Generic Error (Variable

ulGRC) on page 85
ulERC TLR_UINT32 Extended Error Code, see Table 84: Extended error codes for

the connection manager on page 87
ulAppReplyOffset TLR_UINT32 Offset of “Application Reply” data
ulAppReplySize TLR_UINT32 Length of “Application Reply” data in bytes.

The “Application Reply” data can be attached by copying it
right behind the connection path in
tFwdOpenData.abConnPath[]

tFwdOpenData EIP_CM_LAR
GEFWOPEN_R
EQ_T

 Forward Open data (See Table 114)

Table 115: EIP_OBJECT_LFWD_OPEN_FWD_RES – Response of Forward_Open indication

The Application Interface 132/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

4.2.7 Forward_Open_Completion Indication

Note:

This functionality must be enabled by setting the Parameter flag
EIP_OBJECT_PRM_FWRD_OPEN_CLOSE_FORWARDING using command
EIP_OBJECT_SET_PARAMETER_REQ (0x00001AF2).

This indication will be sent to the host application during processing of a Forward_Open request by
the protocol stack from the network.

As stated in the preceding section, after reception of EIP_OBJECT_FWD_OPEN_FWD_RES and
checking parameters and initializing corresponding resources, the protocol stack sends the
indication EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND to give feedback to the host
application whether the connection could be established or not.

Please have a look at Figure 21 on page 127 to get an overview about the possible packet
sequences.

Packet Structure Reference
typedef struct EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND_Ttag
{
 TLR_UINT16 usCmInstance;
 TLR_UINT16 usConnSerialNum;
 TLR_UINT16 usVendorId;
 TLR_UINT32 ulOSerialNum;
 TLR_UINT32 ulGRC;
 TLR_UINT32 ulERC;
} EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND_T;

typedef struct EIP_OBJECT_PACKET_FWD_OPEN_FWD_COMPLETION_IND_Ttag
{
 TLR_PACKET_HEADER_T tHead;
 EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND_T tData;
} EIP_OBJECT_PACKET_FWD_OPEN_FWD_COMPLETION_IND_T;

#define EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND_SIZE \
sizeof(EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND_T)

The Application Interface 133/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Description

Structure EIP_OBJECT_PACKET_FWD_OPEN_FWD_COMPLETION_IND_T Type: Indication

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T
ulDest UINT32 0x20/

DPMINTF_QUE
Destination Queue-Handle

ulSrc UINT32 0 ... 232-1 Source Queue-Handle
ulDestId UINT32 Destination End Point Identifier, specifying the final

receiver of the packet within the Destination Process.
Set to 0 for the Initialization Packet

ulSrcId UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 16 EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND
_SIZE - Packet Data Length in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by
the Source Process of the Packet

ulSta UINT32 Status
ulCmd UINT32 0x1A4C EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND -

Command
ulExt UINT32 0 Extension not in use, set to zero for compatibility

reasons
ulRout UINT32 x Routing, do not touch

tData - Structure EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND_T
usCmInstance TLR_UINT16 0 - 64 Connection Manager Instance.

Value 0 is not a valid instance number. It will be present
if the connection was not established (ulGRC != 0).

usConnSerialNum TLR_UINT16 0 - 255 Connection serial number
usVendorId TLR_UINT16 Originator Vendor ID
ulOSerialNum TLR_UINT32 Originator serial number
ulGRC TLR_UINT32 General Error Code, see Table 83: Generic Error

(Variable ulGRC) on page 85
ulERC TLR_UINT32 Extended Error Code, see Table 84: Extended error

codes for the connection manager on page 87

Table 116: EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND – Forward_Open completion indication

For more information on the parameters usConnSerialNum, usVendorId and
ulOSerialNum, see section 4.2.2“Connection State Change Indication”.

The Application Interface 134/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Structure Reference
typedef struct EIP_OBJECT_PACKET_FWD_OPEN_FWD_COMPLETION_RES_Ttag
{
 TLR_PACKET_HEADER_T tHead;
} EIP_OBJECT_PACKET_FWD_OPEN_FWD_COMPLETION_RES_T;

#define EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_RES_SIZE 0

Packet Description

Structure EIP_OBJECT_PACKET_FWD_OPEN_FWD_COMPLETION_RES_T Type: Response

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T
ulDest UINT32 0x20/

DPMINTF_QUE
Destination Queue-Handle

ulSrc UINT32 0 ... 232-1 Source Queue-Handle
ulDestId UINT32 Destination End Point Identifier, specifying the final

receiver of the packet within the Destination Process.
Set to 0 for the Initialization Packet

ulSrcId UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 0 EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_RES
_SIZE - Packet Data Length in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by
the Source Process of the Packet

ulSta UINT32 Status
ulCmd UINT32 0x1A4D EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_RES -

Command
ulExt UINT32 0 Extension not in use, set to zero for compatibility

reasons
ulRout UINT32 x Routing, do not touch

Table 117: EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_RES – Response of Forward_Open completion indication

The Application Interface 135/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

4.2.8 Forward_Close Indication

Note:

This functionality must be enabled by setting the Parameter flag
EIP_OBJECT_PRM_FWRD_OPEN_CLOSE_FORWARDING using command
EIP_OBJECT_SET_PARAMETER_REQ (0x00001AF2).

This indication will be sent to the host application when a Forward_Close request was received by
the protocol stack from the network. The protocol stack forwards the Forward_Close request
without doing any processing on it. Only the parameters “Connection Serial Number”, “Originator
Vendor ID” and “Originator Serial number” will be checked in advance. The host application now
has the possibility to check/modify parameters within the Forward_Close request data.

Upon reception of EIP_OBJECT_FWD_CLOSE_FWD_RES, the protocol stack processes the
Forward_Close request data that comes with this response packet. It will be handled as if it directly
came from the network.

The host application also has the possibility to reject the Forward_Close request right away by
setting the corresponding status field in the EIP_OBJECT_FWD_CLOSE_FWD_RES packet.

For a better understanding of how these packets are used, see Figure 22.

The Application Interface 136/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Figure 22: Packet sequence for Forward_Close forwarding functionality

The Application Interface 137/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Structure Reference
#define EIP_OBJECT_MAX_PACKET_LEN 1520

typedef struct EIP_CM_APP_FWCLOSE_IND_Ttag
{
 TLR_UINT8 bPriority;
 TLR_UINT8 bTimeOutTicks;
 TLR_UINT16 usConnSerialNum;
 TLR_UINT16 usVendorId;
 TLR_UINT32 ulOSerialNum;
 TLR_UINT8 bConnPathSize;
 TLR_UINT8 bReserved1;
 TLR_UINT8 bConnPath[EIP_OBJECT_MAX_PACKET_LEN];
} EIP_CM_APP_FWCLOSE_IND_T;

typedef struct EIP_OBJECT_FWD_CLOSE_FWD_IND_Ttag
{
 TLR_VOID* pRouteMsg;
 TLR_UINT32 aulReserved[2];
 EIP_CM_APP_FWCLOSE_IND_T tFwdCloseData;
} EIP_OBJECT_FWD_CLOSE_FWD_IND_T;

typedef struct EIP_OBJECT_PACKET_FWD_CLOSE_FWD_IND_Ttag
{
 TLR_PACKET_HEADER_T tHead;
 EIP_OBJECT_FWD_CLOSE_FWD_IND_T tData;
} EIP_OBJECT_PACKET_FWD_CLOSE_FWD_IND_T;

#define EIP_OBJECT_FWD_CLOSE_FWD_IND_SIZE sizeof(EIP_OBJECT_FWD_CLOSE_FWD_IND_T) – \

Packet Description

Structure EIP_OBJECT_PACKET_FWD_CLOSE_FWD_IND_T Type: Indication

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T
ulDest UINT32 0x20/ DPMINTF_QUE Destination Queue-Handle
ulSrc UINT32 0 ... 232-1 Source Queue-Handle
ulDestId UINT32 Destination End Point Identifier, specifying the final

receiver of the packet within the Destination Process.
Set to 0 for the Initialization Packet

ulSrcId UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 24 + n EIP_OBJECT_FWD_CLOSE_FWD_IND_SIZE + n -
Packet Data Length in bytes
n: Length of connection path (abConnPath) in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by
the Source Process of the Packet

ulSta UINT32 Status
ulCmd UINT32 0x1A4E EIP_OBJECT_FWD_CLOSE_FWD_IND - Command
ulExt UINT32 0 Extension not in use, set to zero for compatibility

reasons
ulRout UINT32 x Routing, do not touch

tData - Structure EIP_OBJECT_FWD_CLOSE_FWD_IND_T
pRouteMsg TLR_VOID Pointer to remember underlying Encapsulation request

(must not be modified by app)
aulReserved[2] TLR_UINT32 Place holder to be filled by response parameters, see

EIP_OBJECT_FWD_CLOSE_FWD_RES_T

The Application Interface 138/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Structure EIP_OBJECT_PACKET_FWD_CLOSE_FWD_IND_T Type: Indication
tFwdCloseData EIP_CM_APP

_FWCLOSE_I
ND_T

 Forward Close data (See Table 119:
EIP_CM_APP_FWCLOSE_IND_T - Forward_Close
request data

)

Table 118:EIP_OBJECT_FWD_CLOSE_FWD_IND – Forward_Close request indication

Structure EIP_CM_APP_FWCLOSE_IND_T

Variable Type Description
bPriority TLR_UINT8 Used to calculate request timeout

information
bTimeOutTicks TLR_UINT8 Used to calculate request timeout

information
usConnSerialNum TLR_UINT16 Connection serial number
usVendorId TLR_UINT16 Originator Vendor ID
ulOSerialNum TLR_UINT32 Originator serial number
bConnPathSize TLR_UINT8 Connection path size in 16 bit words
bReserved1 TLR_UINT8 Reserved
bConnPath[EIP_OBJECT_MAX_PACKET_LEN] TLR_UINT8 Connection path

Table 119: EIP_CM_APP_FWCLOSE_IND_T - Forward_Close request data

The Application Interface 139/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Structure Reference
typedef struct EIP_OBJECT_FWD_CLOSE_FWD_RES_Ttag
{
 TLR_VOID* pRouteMsg;
 TLR_UINT32 ulGRC;
 TLR_UINT32 ulERC;
 EIP_CM_APP_FWCLOSE_IND_T tFwdCloseData;
} EIP_OBJECT_FWD_CLOSE_FWD_RES_T;

typedef struct EIP_OBJECT_PACKET_FWD_CLOSE_FWD_RES_Ttag
{
 TLR_PACKET_HEADER_T tHead;
 EIP_OBJECT_FWD_CLOSE_FWD_RES_T tData;
} EIP_OBJECT_PACKET_FWD_CLOSE_FWD_RES_T;

#define EIP_OBJECT_FWD_CLOSE_FWD_RES_SIZE sizeof(EIP_OBJECT_FWD_CLOSE_FWD_RES_T) – \
 EIP_OBJECT_MAX_PACKET_LEN

Packet Description

structure EIP_OBJECT_PACKET_FWD_CLOSE_FWD_RES_T Type: Response

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T
ulDest UINT32 0x20/ DPMINTF_QUE Destination Queue Handle

ulSrc UINT32 0 ... 232-1 Source Queue Handle
ulDestId UINT32 Destination Queue Reference
ulSrcId UINT32 Source Queue Reference
ulLen UINT32 24 + n EIP_OBJECT_FWD_CLOSE_FWD_RES_SIZE + n -

Packet Data Length in bytes
n: Length of connection path (abConnPath) in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by
the Source Process of the Packet

ulSta UINT32 Status
ulCmd UINT32 0x1A4F EIP_OBJECT_FWD_CLOSE_FWD_RES - Command
ulExt UINT32 0 Extension not in use, set to zero for compatibility

reasons
ulRout UINT32 x Routing, do not touch

tData - Structure EIP_OBJECT_FWD_CLOSE_FWD_RES_T
pRouteMsg TLR_VOID* Pointer to underlying Encapsulation request
ulGRC TLR_UINT32 General Error Code, see Table 83: Generic Error

(Variable ulGRC) on page 85
ulERC TLR_UINT32 Extended Error Code, see Table 84: Extended error

codes for the connection manager on page 87
tFwdCloseData EIP_CM_APP

_FWCLOSE_I
ND_T

 Forward Close data (See Table 119:
EIP_CM_APP_FWCLOSE_IND_T - Forward_Close
request data

)

Table 120: EIP_OBJECT_FWD_CLOSE_FWD_RES – Response of Forward_Close indication

The Application Interface 140/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

4.3 Additional services requested by the application
This chapter explains services that can be used from the application.

Overview over the additional services of the EtherNet/IP Adapter

No. of
section

Packet Command
code
(REQ/CNF or
IND/RES)

Page

4.3.1 EIP_APS_GET_MS_NS_REQ 0x0000360E 141

4.3.2 RCX_GET_WATCHDOG_TIME_REQ 0x00002F02 143

4.3.3 RCX_GET_DPM_IO_INFO_REQ 0x00002F0C 144

4.3.4 RCX_UNREGISTER_APP_REQ 0x00002F12 144

4.3.5 RCX_DELETE_CONFIG_REQ 0x00002F14 144

4.3.6 RCX_LOCK_UNLOCK_CONFIG_REQ 0x00002F32 144

4.3.7 RCX_GET_FW_PARAMETER_REQ 0x00002F88 144

4.3.8 RCX_FIRMWARE_IDENTIFY_REQ 0x00001EB6 144
Table 121: Overview over the additional services of the EtherNet/IP Adapter

The Application Interface 141/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

4.3.1 Get Module Status/ Network Status
This packet can be used by the EtherNet/IP Adapter Application in order to obtain information
about the current module and network status for further evaluation.

Table 126 on page 150 lists all possible values of the Module Status (Parameter
ulModuleStatus of the confirmation packet) and their meanings.

Similarly, Table 127 on page 151 lists all possible values of the Network Status (Parameter
ulNetworkStatus of the confirmation packet) and their meanings.

Figure 23 below displays a sequence diagram for the EIP_APS_GET_MS_NS_REQ/CNF packet:

Figure 23: Sequence Diagram for the EIP_APS_GET_MS_NS_REQ/CNF Packet

Packet Structure Reference
#define EIP_APS_GET_MS_NS_REQ_SIZE 0

typedef struct EIP_APS_PACKET_GET_MS_NS_REQ_Ttag
{
 TLR_PACKET_HEADER_T tHead;
} EIP_APS_PACKET_GET_MS_NS_REQ_T;

The Application Interface 142/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Description

structure EIP_APS_PACKET_GET_MS_NS_REQ_T

Type: Request

Area Variable Type Value / Range Description

tHead structure TLR_PACKET_HEADER_T

ulDest UINT32 0x20/
DPMINTF_QUE

Destination Queue-Handle

ulSrc UINT32 0 ... 232-1 Source Queue-Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process. Set
to 0 for the Initialization Packet

ulSrcId UINT32 See rules in
section 3.2.1

Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 0 Packet Data Length in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by the
Source Process of the Packet

ulSta UINT32 See Packet Structure Reference

ulCmd UINT32 0x360E EIP_APS_GET_MS_NS_REQ - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 x Routing, do not touch

Table 122: EIP_APS_GET_MS_NS_REQ – Get Module Status/ Network Status Request

The Application Interface 143/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Packet Structure Reference
typedef struct EIP_APS_GET_MS_NS_CNF_Ttag
{
 TLR_UINT32 ulModuleStatus; /*!< Module Status \n
 TLR_UINT32 ulNetworkStatus; /*!< Network Status \n
} EIP_APS_GET_MS_NS_CNF_T;

#define EIP_APS_GET_MS_NS_CNF_SIZE sizeof(EIP_APS_GET_MS_NS_CNF_T)

typedef struct EIP_APS_PACKET_GET_MS_NS_CNF_Ttag
{
 TLR_PACKET_HEADER_T tHead;
 EIP_APS_GET_MS_NS_CNF_T tData;

} EIP_APS_PACKET_GET_MS_NS_CNF_T;

Packet Description

structure EIP_APS_PACKET_GET_MS_NS_CNF_T

Type: Confirmation

Area Variable Type Value / Range Description

tHead structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination Queue-Handle

ulSrc UINT32 Source Queue-Handle

ulDestId UINT32 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process. Set
to 0 for the Initialization Packet

ulSrcId UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 Packet Data Length in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by the
Source Process of the Packet

ulSta UINT32 See Packet Structure Reference

ulCmd UINT32 0x360F EIP_APS_GET_MS_NS_CNF - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 x Routing, do not touch

tData structure EIP_APS_GET_MS_NS_CNF_T

ulModuleStatus UINT32 0..5 Module Status
The module status describes the current state of the
corresponding MS-LED (provided that it is connected).

See Table 126 for more information.

ulNetworkStatus UINT32 0..5 Network Status
The network status describes the current state of the
corresponding NS-LED (provided that it is connected).

See Table 127 for more information.

Table 123: EIP_APS_GET_MS_NS_CNF – Confirmation of Get Module Status/ Network Status Request

4.3.2 Get Watchdog Time
This packet is used to obtain the watchdog time.

For more details see reference [1]

The Application Interface 144/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

4.3.3 Get DPM I/O Information
This packet is used to obtain offset and length of the used I/O data space.

For more details see reference [1]

4.3.4 Unregister Application
This packet is used to unregister a registered application.

For more details see reference [1]

4.3.5 Delete Configuration
This packet is used to delete the internal stored configuration (RAM/FLASH). Database files on the
filesystem will not be deleted.

For more details see reference [1]

4.3.6 Lock/Unlock Configuration
This packet is used to lock/unlock the configuration.

For more details see reference [1]

4.3.7 Get Firmware Parameter
This packet is used to get the actual used parameter for the configuration. The stack supports the
same ParameterIDs as for RCX_SET_FW_PARAMETER_REQ. (see Table 87
RCX_SET_FW_PARAMETER_REQ ParameterID)

For more details see reference [1]

4.3.8 Get Firmware Identification
This packet is used to obtain firmware identification.

For more details see reference [1]

Status/Error Codes Overview 145/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

5 Status/Error Codes Overview
5.1 Stack Specific Error Codes

Hexadecimal
Value

Definition

Description
0x00000000 TLR_S_OK

Status ok
0xC01F0002 TLR_E_EIP_OBJECT_OUT_OF_MEMORY

System is out of memory
0xC01F0003 TLR_E_EIP_OBJECT_OUT_OF_PACKETS

Task runs out of empty packets at the local packet pool
0xC01F0004 TLR_E_EIP_OBJECT_SEND_PACKET

Sending a packet failed
0xC01F0010 TLR_E_EIP_OBJECT_AS_ALLREADY_EXIST

Assembly instance already exists
0xC01F0011 TLR_E_EIP_OBJECT_AS_INVALID_INST

Invalid Assembly Instance
0xC01F0012 TLR_E_EIP_OBJECT_AS_INVALID_LEN

Invalid Assembly length
0xC01F0020 TLR_E_EIP_OBJECT_CONN_OVERRUN

No free connection buffer available
0xC01F0021 TLR_E_EIP_OBJECT_INVALID_CLASS

Object class is invalid
0xC01F0022 TLR_E_EIP_OBJECT_SEGMENT_FAULT

Segment of the path is invalid
0xC01F0023 TLR_E_EIP_OBJECT_CLASS_ALLREADY_EXIST

Object Class is already used
0xC01F0024 TLR_E_EIP_OBJECT_CONNECTION_FAIL

Connection failed.
0xC01F0025 TLR_E_EIP_OBJECT_CONNECTION_PARAM

Unknown format of connection parameter
0xC01F0026 TLR_E_EIP_OBJECT_UNKNOWN_CONNECTION

Invalid connection ID
0xC01F0027 TLR_E_EIP_OBJECT_NO_OBJ_RESSOURCE

No resource for creating a new class object available
0xC01F0028 TLR_E_EIP_OBJECT_ID_INVALID_PARAMETER

Invalid request parameter
0xC01F0029 TLR_E_EIP_OBJECT_CONNECTION_FAILED

General connection failure. See also General Error Code and Extended Error Code for more
details.

0xC01F0031 TLR_E_EIP_OBJECT_READONLY_INST
Access denied. Instance is read only

0xC01F0032 TLR_E_EIP_OBJECT_DPM_USED
DPM address is already used by another instance.

0xC01F0033 TLR_E_EIP_OBJECT_SET_OUTPUT_RUNNING
Set Output command is already running

Status/Error Codes Overview 146/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Hexadecimal
Value

Definition

Description
0xC01F0034 TLR_E_EIP_OBJECT_TASK_RESETING

EtherNet/IP Object Task is running a reset.
0xC01F0035 TLR_E_EIP_OBJECT_SERVICE_ALREADY_EXIST

Object Service already exists
0xC0590001 TLR_E_EIP_APS_COMMAND_INVALID

Invalid command.
0xC0590002 TLR_E_EIP_APS_PACKET_LENGTH_INVALID

Invalid packet length.
0xC0590003 TLR_E_EIP_APS_PACKET_PARAMETER_INVALID

Invalid packet parameter.
0xC0590004 TLR_E_EIP_APS_TCP_CONFIG_FAIL

TCP/IP configuration failed. The TCP/IP task reports an error: IP address, gateway address,
network mask or configuration flags are invalid.

0xC0590007 TLR_E_EIP_APS_ACCESS_FAIL
Unregister application command rejected, because another task then the registered task has send
an unregister application command. Only the registered task can send the unregister application
command.

0xC0590008 TLR_E_EIP_APS_STATE_FAIL
In normal state: clear watchdog command received. This command can’t be processed in this state
and is rejected.
In watchdog error state: the received command can’t be processed in this state and is rejected.

0xC0590009 TLR_E_EIP_APS_IO_OFFSET_INVALID
Invalid I/O offset.

0xC059000A TLR_E_EIP_APS_FOLDER_NOT_FOUND
Expected folder containing the configuration file(s) not found.

0xC059000B TLR_E_EIP_APS_CONFIG_DBM_INVALID
The configuration file ‘config.nxd’ does not contain the expected configuration parameters.

0xC059000C TLR_E_EIP_APS_NO_CONFIG_DBM
Configuration file named ‘config.nxd’ not found. As a result, EtherNet/IP configuration parameters
are missing.

0xC059000D TLR_E_EIP_APS_NWID_DBM_INVALID
The configuration file named ‘nwid.nxd’ does not contain the expected configuration parameters.

0xC059000E TLR_E_EIP_APS_NO_NWID_DBM
Configuration file ‘nwid.nxd’ not found. As a result, TCP/IP configuration parameters are missing.

0xC059000F TLR_E_EIP_APS_NO_DBM
Configuration file missing.

0xC0590010 TLR_E_EIP_APS_NO_MAC_ADDRESS_AVAILABLE
No MAC address available

0xC0590011 TLR_E_EIP_APS_INVALID_FILESYSTEM
Access to file system failed.

0xC0590012 TLR_E_EIP_APS_NUM_AS_INSTANCE_EXCEEDS
Maximum number of assembly instances exceeds.

0xC0590013 TLR_E_EIP_APS_CONFIGBYDATABASE
Stack is already configured via database

0xC0950001 TLR_E_EIP_DLR_COMMAND_INVALID
Invalid command received.

0xC0950002 TLR_E_EIP_DLR_NOT_INITIALIZED
DLR task is not initialized.

Status/Error Codes Overview 147/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Hexadecimal
Value

Definition

Description
0xC0950003 TLR_E_EIP_DLR_FNC_API_INVALID_HANDLE

Invalid DLR handle at API function call.
0xC0950004 TLR_E_EIP_DLR_INVALID_ATTRIBUTE

Invalid DLR object attribute.
0xC0950005 TLR_E_EIP_DLR_INVALID_PORT

Invalid port.
0xC0950006 TLR_E_EIP_DLR_LINK_DOWN

Port link is down.
0xC0950007 TLR_E_EIP_DLR_MAX_NUM_OF_TASK_INST_EXCEEDED

Maximum number of EtherNet/IP task instances exceeded.
0xC0950008 TLR_E_EIP_DLR_INVALID_TASK_INST

Invalid task instance.
0xC0950009 TLR_E_EIP_DLR_CALLBACK_NOT_REGISTERED

Callback function is not registered.
0xC095000A TLR_E_EIP_DLR_WRONG_DLR_STATE

Wrong DLR state.
0xC095000B TLR_E_EIP_DLR_NOT_CONFIGURED_AS_SUPERVISOR

Not configured as supervisor.
0xC095000C TLR_E_EIP_DLR_INVALID_CONFIG_PARAM

Configuration parameter is invalid.
0xC095000D TLR_E_EIP_DLR_NO_STARTUP_PARAM_AVAIL

No startup parameters available.
0xC095000E EIP_DLR_E_NO_ETH_BUFFER

No Ethernet buffer
0xC0C90001 TLR_E_SOCK_UNSUPPORTED_SOCKET

Unsupport socket domain, type and protocol combination.
0xC0C90002 TLR_E_SOCK_INVALID_SOCKET_HANDLE

Invalid socket handle
0xC0C90003 TLR_E_SOCK_SOCKET_CLOSED

Socket was closed.
0xC0C90004 TLR_E_SOCK_INVALID_OP

The command is invalid for the particular socket
0xC0C90005 TLR_E_SOCK_INVALID_ADDRESS_FAMILY

An invalid address family was used for this socket
0xC0C90006 TLR_E_SOCK_IN_USE

The specified address is already in use.
0xC0C90007 TLR_E_SOCK_HUP

The remote side closed the connection
0xC0C90008 TLR_E_SOCK_WOULDBLOCK

The operation would block

Table 124: Status/Error Codes of EtherNet/IP Stack

Status/Error Codes Overview 148/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

5.2 General EtherNet/IP Error Codes
The following table contains the possible General Error Codes defined within the EtherNet/IP
standard.

General Status Code
(specified hexadecimally)

Status Name Description

00 Success The service has successfully been performed by the specified
object.

01 Connection failure A connection-elated service failed. This happened at any
location along the connection path.

02 Resource
unavailable

Some resources which were required for the object to perform
the requested service were not available.

03 Invalid parameter
value

See status code 0x20, which is usually applied in this situation.

04 Path segment error A path segment error has been encountered. Evaluation of the
supplied path information failed.

05 Path destination
unknown

The path references an unknown object class, instance or
structure element causing the abort of path processing.

06 Partial transfer Only a part of the expected data could be transferred.
07 Connection lost The connection for messaging has been lost.
08 Service not

supported
The requested service has not been implemented or has not
been defined for this object class or instance.

09 Invalid attribute value Detection of invalid attribute data
0A Attribute list error An attribute in the Get_Attribute_List or Set_Attribute_List

response has a status not equal to 0.
0B Already in requested

mode/state
The object is already in the mode or state which has been
requested by the service

0C Object state conflict The object is not able to perform the requested service in the
current mode or state

0D Object already exists It has been tried to create an instance of an object which
already exists.

0E Attribute not settable It has been tried to change a non-modifiable attribute.
0F Privilege violation A check of permissions or privileges failed.
10 Device state conflict The current mode or state of the device prevents the execution

of the requested service.
11 Reply data too large The data to be transmitted in the response buffer requires more

space than the size of the allocated response buffer
12 Fragmentation of a

primitive value
The service specified an operation that is going to fragment a
primitive data value, i.e. half a REAL data type.

13 Not enough data The service did not supply all required data to perform the
specified operation.

14 Attribute not
supported

An unsupported attribute has been specified in the request

15 Too much data More data than was expected were supplied by the service.
16 Object does not exist The specified object does not exist in the device.
17 Service

fragmentation
sequence not in
progress

Fragmentation sequence for this service is not currently active
for this data.

18 No stored attribute
data

The attribute data of this object has not been saved prior to the
requested service.

19 Store operation
failure

The attribute data of this object could not be saved due to a
failure during the storage attempt.

Status/Error Codes Overview 149/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

General Status Code
(specified hexadecimally)

Status Name Description

1A Routing failure,
request packet too
large

The service request packet was too large for transmission on a
network in the path to the destination. The routing device was
forced to abort the service.

1B Routing failure,
response packet too
large

The service response packet was too large for transmission on
a network in the path from the destination. The routing device
was forced to abort the service.

1C Missing attribute list
entry data

The service did not supply an attribute in a list of attributes that
was needed by the service to perform the requested behavior.

1D Invalid attribute value
list

The service returns the list of attributes containing status
information for invalid attributes.

1E Embedded service
error

An embedded service caused an error.

1F Vendor specific error A vendor specific error has occurred. This error should only
occur when none of the other general error codes can correctly
be applied.

20 Invalid parameter A parameter which was associated with the request was invalid.
The parameter does not meet the requirements of the CIP
specification and/or the requirements defined in the specification
of an application object.

21 Write-once value or
medium already
written

An attempt was made to write to a write-once medium for the
second time, or to modify a value that cannot be changed after
being established once.

22 Invalid reply received An invalid reply is received. Possible causes can for instance be
among others a reply service code not matching the request
service code or a reply message shorter than the expectable
minimum size.

23-24 Reserved Reserved for future extension of CIP standard
25 Key failure in path The key segment (i.e. the first segment in the path) does not

match the destination module. More information about which
part of the key check failed can be derived from the object
specific status.

26 Path size Invalid Path cannot be routed to an object due to lacking information or
too much routing data have been included.

27 Unexpected attribute
in list

It has been attempted to set an attribute which may not be set in
the current situation.

28 Invalid member ID The Member ID specified in the request is not available within
the specified class/ instance or attribute

29 Member cannot be
set

A request to modify a member which cannot be modified has
occurred

2A Group 2 only server
general failure

This DeviceNet-specific error cannot occur in EtherNet/IP

2B-CF Reserved Reserved for future extension of CIP standard
D0-FF Reserved for object

class and service
errors

An object class specific error has occurred.

Table 125: General Error Codes according to CIP Standard

Appendix 150/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

6 Appendix
6.1 Module and Network Status
This section describes the LED signaling of EtherNet/IP Adapter devices. 2 LEDs display status
information namely the Module Status LED denominated as MS and the network Status LED
denominated as NS.

6.1.1 Module Status
Table 126 lists the possible values of the Module Status and their meanings (Parameter
ulModuleStatus):

Symbolic name Numeric
value

Meaning

EIP_MS_NO_POWER 0 No Power
If no power is supplied to the device, the module status indicator is steady off.

EIP_MS_SELFTEST 1 Self-Test
While the device is performing its power up testing, the module status indicator
flashes green/red.

EIP_MS_STANDBY 2 Standby
If the device has not been configured, the module status indicator flashes
green.

EIP_MS_OPERATE 3 Device operational
If the device is operating correctly, the module status indicator is steady green.

EIP_MS_MINFAULT 4 Minor fault

If the device has detected a recoverable minor fault, the module status
indicator flashes red.

Note: An incorrect or inconsistent configuration would
be considered a minor fault.

EIP_MS_MAJFAULT 5 Major fault

If the device has detected a non-recoverable major fault, the module status
indicator is steady red.

Table 126: Possible values of the Module Status

Appendix 151/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

6.1.2 Network Status
Table 127 lists the possible values of the Network Status and their meanings (Parameter
ulNetworkStatus):

Symbolic name Numeric
value

Meaning

EIP_NS_NO_POWER 0 Not powered, no IP address
Either the device is not powered, or it is powered but no IP address has
been configured yet.

EIP_NS_NO_CONNECTION 1 No connections
An IP address has been configured, but no CIP connections are
established, and an Exclusive Owner connection has not timed out.

EIP_NS_CONNECTED 2 Connected
At least one CIP connection of any transport class is established, and an
Exclusive Owner connection has not timed out.

EIP_NS_TIMEOUT 3 Connection timeout
An Exclusive Owner connection for which this device is the target has
timed out. The network status indicator returns to steady green only when
all timed out Exclusive Owner connections are reestablished.
The Network LED turns from flashing red to steady green only when all
connections to the previously timed-out O->T connection points are
reestablished. Timeout of connections other than Exclusive Owner
connections do not cause the indicator to flash red. The Flashing Red
state applies to target connections only.

EIP_NS_DUPIP 4 Duplicate IP
The device has detected that its IP address is already in use.

EIP_NS_SELFTEST 5 Self-Test
The device is performing its power-on self-test (POST). During POST the
network status indicator alternates flashing green and red.

Table 127: Possible values of the Network Status

6.2 Quality of Service (QoS)

6.2.1 Introduction
Quality of Service, abbreviated as QoS, denotes a mechanism treating data streams according to
their delivery characteristics, of which the by far most important one is the priority of the data
stream. Therefore, in the context of EtherNet/IP QoS means priority-dependent control of Ethernet
data streams. QoS is of special importance for advanced time-critical applications such as CIP
Sync and CIP Motion and is also mandatory for DLR (see section 6.3”DLR”).

In TCP/IP-based protocols, there are two standard mechanisms available for implementing QoS.
These are:

 Differentiated Services (abbreviated as DiffServ)

 The 802.1D/Q Protocols

which are both described in more detail below.

Introducing QoS means providing network infrastructure devices such as switches and hubs with
means to differentiate between frames with different priority Therefore, these mechanisms tag the
frames by writing priority information into the frames. This is technique is called priority tagging.

Appendix 152/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

6.2.2 DiffServ
In the definition of an IP v4 frame, the second byte is denominated as TOS. See figure below:

Figure 24: TOS Byte in IP v4 Frame Definition

DiffServ is a schematic model for the priority-based classification of IP frames based on an
alternative interpretation of the TOS byte. It has been specified in RFC2474.

The idea of DiffServ consists in redefining 6 bits (i.e. the bits 8 to 13 of the whole IP v4 frame) and
to use them as codepoint. Thus these 6 bits are denominated as DSCP (Differentiated Services
Codepoint) in the context of DiffServ. These 6 bits allow address 63 predefined routing behaviors
which can be applied for routing the frame at the next router and specifies exactly how to process
the frame there. These routing behaviors are called PHBs (Per-hop behavior). A lot of PHBs have
been predefined and the IANA has assigned DSCPs to these PHBs. For a list of these DSCPs
and the assigned PHBs, see http://www.iana.org/assignments/dscp-registry/dscp-registry.xhtml.

Appendix 153/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Mapping of DSCP to EtherNet/IP

The following table shows the default assignment of DSCPs to different kinds of data traffic in
EtherNet/IP which is defined in the CIP specification.

Traffic Type CIP Priority DSCP (numeric) DSCP (bin)

CIP Class 0 and 1 Urgent (3) 55 110111

Scheduled (2) 47 101111

High (1) 43 101011

Low (0) 31 011111

CIP Class 3

CIP UCMM

All other encapsulation messages

All 27 011011

Table 128: Default Assignment of DSCPs in EtherNet/IP

6.2.3 802.1D/Q Protocol
Another possibility is used by 802.1Q. IEEE 802.1Q is a standard for defining virtual LANs (VLANs)
on an Ethernet network. It introduces an additional header, the IEEE 802.1Q header, which is
located between Source MAC and Ethertype and Size in the standard Ethernet frame.

The IEEE 802.1Q header has the Ethertype 0x8100. It allows to specify

 The ID of the Virtual LAN (VLAN ID, 12 bits wide)

 And the priority (defined in 802.1D)

Figure 25: Ethernet Frame with IEEE 802.1Q Header

As the header definition reserves only 3 bits for the priority (see figure below), only 8 priorities
(levels from 0 to 7) can be used here.

Appendix 154/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Mapping of 802.1D/Q to EtherNet/IP

The following table shows the default assignment of 802.1D priorities to different kinds of data
traffic in EtherNet/IP which is defined in the CIP specification.

Traffic Type CIP Priority 802.1D priority

CIP Class 0 and 1 Urgent (3) 6

Scheduled (2) 5

High (1) 5

Low (0) 3

CIP Class 3

CIP UCMM

All other encapsulation messages

All 3

Table 129: Default Assignment of 802.1D/Q Priorities in EtherNet/IP

6.2.4 The QoS Object
Within the EtherNet/IP implementation of QoS, the DiffServ mechanism is usually always present
and does not need to be activated explicitly. In contrast to this, 802.1Q must explicitly be activated
on all participating devices. The main capabilities of the QoS object are therefore:

 To enable 802.1Q (VLAN tagging)

 To enable setting parameters related to DiffServ (DSCP parameters)

For more information on the QoS object in the Hilscher EtherNet/IP adapter protocol stack see
section “Quality of Service Object (Class Code: 0x48)“ of this document.

6.2.4.1 Enable 802.1Q (VLAN tagging)

The 802.1Q VLAN tagging mechanism can be turned on and off by setting attribute 1 (802.1Q Tag
Enable) of the QoS object to value 1.

Appendix 155/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

6.3 DLR
This section intends to give a brief and compact overview about the basic facts and concepts of the
DLR (Device level Ring) networking technology supported by Hilscher’s EtherNet/IP Adapter
protocol stack.

DLR is a technology (based on a special protocol additionally to Ethernet/IP) for creating a single
ring topology with media redundancy.

It is based on Layer 2 (Data link) of the ISO/OSI model of networking and thus transparent for
higher layers (except the existence of the DLR object providing configuration and diagnosis
capabilities).

In general, there are two kinds of nodes in the network:

 Ring supervisors

 Ring nodes

DLR requires all modules (both supervisors and normal ring nodes) to be equipped with two
Ethernet ports and internal switching technology.

Each module within the DLR network checks the target address of the currently received DLR
frame whether it matches its own MAC address.

 If yes, it keeps the packet and processes it. It will not be propagated any further.

 If no, it propagates the packet via the other port which did not receive the packet.

There is a ring topology so that all devices in the DLR network are each connected to two different
neighbors with their two Ethernet ports. In order to avoid looping, one port of the (active) supervisor
is blocked.

6.3.1 Ring Supervisors
There are two kinds of supervisors defined:

 Active supervisors

 Back-up supervisors

Note: The Hilscher EtherNet/IP stack does not support the ring supervisor mode!

Active supervisors

An active has the following duties:

 It periodically sends beacon and announce frames.

 It permanently verifies the ring integrity.

 It reconfigures the ring in order to ensure operation in case of single faults.

 It collects diagnostic information from the ring.

At least one active ring supervisor is required within a DLR network.

Back-up supervisors

It is recommended but not necessary that each DLR network should have at least one back-up
supervisor. If the active supervisor of the network fails, the back-up supervisor will take over the
duties of the active supervisor.

Appendix 156/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

6.3.2 Precedence Rule for Multi-Supervisor Operation
Multi-Supervisor Operation is allowed for DLR networks. If more than one supervisor is configured
as active on the ring, the following rule applies in order to determine the supervisor which is
relevant:

Each supervisor contains an internal precedence number which can be configured. The supervisor
within the ring carrying the highest precedence number will be the active supervisor, the others will
behave passively and switch back to the state of back-up supervisors.

6.3.3 Beacon and Announce Frames
Beacon frames and announce frames are both used to inform the devices within the ring about the
transition (i.e. the topology change) from linear operation to ring operation of the network.

They differ in the following:

Direction

 Beacon frames are sent in both directions.

 Announce frames are sent only in one direction of the ring, however.

Frequency

 Beacon frames are always sent every beacon interval. Usually, a beacon interval is defined
to have an interval of 400 microseconds. However, beacon frames may be sent even faster
up to an interval of 100 microseconds.

 Announce frames are always sent in time intervals of one second.

Support for Precedence Number

 Only Beacon frames contain the internal precedence number of the supervisor which sent
them

Support for Network Fault Detection

 Loss of beacon frames allows the active supervisor to detect and discriminate various types
of network faults of the ring on its own.

Appendix 157/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

6.3.4 Ring Nodes
This subsection deals with modules in the ring, which does not have supervisor capabilities. These
are denominated as (normal) ring nodes.

There are two types of normal ring nodes within the network:
 Beacon-based

 Announce-based

A DLR network may contain an arbitrary number of normal nodes.

Nodes of type beacon-based have the following capabilities

 They implement the DLR protocol, but without the ring supervisor capability

 They must be able to process beacon frames with hardware assistance

Nodes of type announce-based have the following capabilities

 They implement the DLR protocol, but without the ring supervisor capability

 They do not process beacon frames, they just forward beacon frames

 They must be able to process announce frames

 This type is often only a software solution

Note: Hilscher devices running an EtherNet/IP firmware always run as a beacon-based
ring node.

A ring node (independently whether it works beacon-based or announce-based) may have three
internal states.

 IDLE_STATE

 FAULT_STATE

 NORMAL_STATE

For a beacon-based ring node, these states are defined as follows:

 IDLE_STATE

The IDLE_STATE is the state which is reached after power-on. In IDLE_STATE the network
operates as linear network, there is no ring support active. If on one port a beacon frame
from a supervisor is received, the state changes to FAULT_STATE.

 FAULT_STATE

The Ring node reaches the FAULT_STATE after the following conditions:

A. If a beacon frame from a supervisor is received on at least one port

B. If a beacon frame from a different supervisor than the currently active one is received
on at least one port and the precedence of this supervisor is higher than that of the
currently active one.

The FAULT_STATE provides partial ring support, but the ring is still not fully operative in
FAULT_STATE. If the beacon frames have a time-out on both ports, the state will change to
the IDLE_STATE. If on both ports a beacon frame is received and a beacon frame with
RING_NORMAL_STATE has been received, the state changes to NORMAL_STATE.

Appendix 158/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

 NORMAL_STATE

The Ring node reaches the NORMAL_STATE only after the following condition:

If a beacon frame from the active supervisor is received on both ports and a beacon
frame with RING_NORMAL_STATE has been received

The NORMAL_STATE provides full ring support. The following conditions will cause a
change to the FAULT_STATE:

A. A link failure has been detected.

B. A beacon frame with RING_FAULT_STATE has been received from the active
supervisor on at least one port.

C. A beacon frame from the active supervisor had a time-out on at least one port

D. A beacon frame from a different supervisor than the currently active one is received on
at least one port and the precedence of this supervisor is higher than that of the
currently active one.

For an announce-based ring node, these states are defined as follows:

 IDLE_STATE

The IDLE_STATE is the state which is reached after power-on. It can also be reached from
any other state if the announce frame from the active supervisor has a time-out. In
IDLE_STATE the network operates as linear network, there is no ring support active. If an
announce frame with FAULT_STATE is received from a supervisor, the state changes to
FAULT_STATE.

 FAULT_STATE

The Ring node reaches the FAULT_STATE after the following conditions:

 If the network is in IDLE_STATE and an announce frame with FAULT_STATE is
received from any supervisor.

 If the network is in NORMAL_STATE and an announce frame with FAULT_STATE is
received from the active or a different supervisor.

 If the network is in NORMAL_STATE and a link failure has been detected.

The FAULT_STATE provides partial ring support, but the ring is still not fully operative in
FAULT_STATE.

If the announce frame from the active supervisor has a time-out, the state will fall back to the
IDLE_STATE.

If an announce frame with NORMAL_STATE has been received from the active or a different
supervisor, the state changes to NORMAL_STATE.

 NORMAL_STATE

The Ring node reaches the NORMAL_STATE only after the following condition:

 If the network is in IDLE_STATE and an announce frame with NORMAL_STATE is
received from any supervisor.

 If the network is in FAULT_STATE and an announce frame with NORMAL_STATE is
received from the active or a different supervisor.

The NORMAL_STATE provides full ring support. The following conditions will cause a fall
back to the FAULT_STATE:

Appendix 159/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

 A link failure has been detected.

 A announce frame with FAULT_STATE has been received from the active or a different
supervisor.

The following conditions will cause a fall back to the IDLE _STATE:

 The announce frame from the active supervisor has a time-out.

6.3.5 Normal Network Operation
In normal operation, the supervisor sends beacon and, if configured, announce frames in order to
monitor the state of the network. Usual ring nodes and back-up supervisors receive these frames
and react. The supervisor may send announce frames once per second and additionally, if an error
is detected.

6.3.6 Rapid Fault/Restore Cycles
Sometimes a series of rapid fault and restore cycles may occur in the DLR network for instance if a
connector is faulty. If the supervisor detects 5 faults within a time period of 30 seconds, it sets a
flag (Rapid Fault/Restore Cycles) which must explicitly be reset by the user then. This can be
accomplished via the “Clear Rapid Faults” service.

6.3.7 States of Supervisor
A ring supervisor may have five internal states.

 IDLE_STATE

 FAULT_STATE (active)

 NORMAL_STATE (active)

 FAULT_STATE (backup)

 NORMAL_STATE (backup)

For a ring supervisor, these states are defined as follows:

 FAULT_STATE (active)

The FAULT_STATE (active) is the state which is reached after power-on if the supervisor
has been configured as supervisor.

The supervisor reaches the FAULT_STATE (active) after the following conditions:

A. As mentioned above, at power-on

B. From NORMAL_STATE (active):

If a link failure occurs or if a link status frame indicating a link failure is received from a
ring node or if the beacon time-out timer expires on one port

C. From FAULT_STATE (backup):

If on both ports there is a time-out of the beacon frame from the currently active
supervisor

The FAULT_STATE (active) provides partial ring support, but the ring is still not fully
operative in FAULT_STATE (active).

If a beacon frame from a different supervisor than the currently active one is received on at
least one port and the precedence of this supervisor is higher, the state will fall back to the
FAULT_STATE (backup).

Appendix 160/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

If on both ports an own beacon frame has been received, the state changes to
NORMAL_STATE (active).

 NORMAL_STATE (active)

The supervisor reaches the NORMAL_STATE (active) only after the following condition:

 If an own beacon frame is received on both ports during FAULT_STATE (active).

The NORMAL_STATE provides full ring support.

The following conditions will cause a change to the FAULT_STATE (active):

A. A link failure has been detected.

B. A link status frame indicating a link failure is received from a ring node

C. The beacon time-out timer expires on one port

The following conditions will cause a change to the FAULT_STATE (backup):

A. A beacon frame from the active supervisor had a time-out on at least one port

B. If a beacon frame from a different supervisor with higher precedence is received on at
least one port.

 FAULT_STATE (backup)

The supervisor reaches the FAULT_STATE (backup) after the following conditions:

A. From NORMAL_STATE (active):

A beacon frame from a supervisor with higher precedence is received on at least one
port.

B. From FAULT_STATE (active):

A beacon frame from a different supervisor with higher precedence and the
precedence of this supervisor is higher.

C. From NORMAL_STATE (backup):

i. A link failure has been detected.

ii. A beacon frame with RING_FAULT_STATE is received from the active
supervisor

iii. The beacon time-out timer (from the active supervisor) expires on one port

iv. A beacon frame from a different supervisor with higher precedence and the
precedence of this supervisor is higher.

D. From IDLE_STATE:

A beacon frame is received from any supervisor on one port

The FAULT_STATE (backup) provides partial ring support, but the ring is still not fully
operative in FAULT_STATE (backup).

The following condition will cause a transition to the FAULT_STATE (active):

i. The beacon time-out timer (from the active supervisor) expires on both ports

The following condition will cause a transition to the NORMAL_STATE (backup):

ii. Beacon frames from the active supervisor are received on both ports and a
beacon frame with RING_NORMAL_STATE has been received.

Appendix 161/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The following condition will cause a transition to the IDLE_STATE:

iii. The beacon time-out timer (from the active supervisor) expires on both ports

 NORMAL_STATE (backup)

The supervisor reaches the NORMAL_STATE (backup) only after the following condition:

 Beacon frames from the active supervisor are received on both ports and a beacon
frame with RING_NORMAL_STATE has been received.

The NORMAL_STATE (backup) provides full ring support. The following conditions will
cause a change to the FAULT_STATE (backup):

A. A link failure has been detected.

B. A beacon frame with RING_FAULT_STATE has been received from the active
supervisor on at least one port.

C. The beacon time-out timer (from the active supervisor) expires on both ports.

D. A beacon frame from a different supervisor with higher precedence and the
precedence of this supervisor is higher.

 IDLE_STATE

The IDLE_STATE is the state which is reached after power-on if the supervisor has not been
configured as supervisor.

In IDLE_STATE the network operates as linear network, there is no ring support active. If on
one port a beacon frame from a supervisor is received, the state changes to FAULT_STATE
(backup).

For more details refer to the DLR specification in reference [4], section “9-5 Device Level Ring”.

Appendix 162/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

6.4 Quick Connect

6.4.1 Introduction
In many automotive applications, robots, tool changers and framers are required to quickly
exchange tooling fixtures which contain a section or segment of an industrial network. This
requires the network and nodes to be capable of quickly connecting and disconnecting, both
mechanically, and logically.

While the mechanical means for connecting and disconnecting tooling exists, achieving a quick re-
establishment of a logical network connection between a network controller and a fully powered-
down node on Ethernet can take as much as 10 or more seconds. This is too slow for applications
that require very short cycle times.

The time in which a robot arm first makes electrical contact with a new tool, until the mechanical
lock being made, is typically 1 second. In applications where the tools are constantly being
connected and disconnected, the nodes need to be able to achieve a logical connection to the
controller and test the position of the tool in less than 1 second from the time the tool and the robot
make an electrical connection. This means that the node needs to be able to power up and
establish a connection in approximately 500 ms.

It should be noted that controller and robotic application behavior is outside the scope of this
specification.

The Quick Connect feature is an option enabled on a node-by-node basis. When enabled, the
Quick Connect feature will direct the EtherNet/IP target device to quickly power up and join an
EtherNet/IP network.

In order for Quick Connect devices to power up as quickly as possible, manufacturers should
minimize the hardware delay at power-up and reset as much as possible.

The Quick Connect feature is enabled within the device through the non-volatile EtherNet/IP Quick
Connect attribute (12) in the TCP/IP object. A device shall have this feature disabled as the factory
default.

The goal for Quick Connect connection time is 500ms. Specifically, this is defined as the
guaranteed repeatable time between the electrical contact of power and Ethernet signals at the
tool changer, and when the newly connected devices are ready to send the first CIP I/O data
packet.

Quick Connect connection time is comprised of several key time durations. The majority of the
Quick Connect connection time is due to the Quick Connect target devices’ power-up time. Also
contributing to the connection time is the amount of time it takes a controller to detect the newly
attached device and send a Forward Open to start the connection process. The overall 500ms
Quick Connect connection time is additive, and consists of the Quick Connect devices’ power-up
time, the controller’s connection establishment time, and actual network communication time. Also,
the network communication time is dependent on the network topology. For instance, in a linear
topology, the network communication time will be dependent on all devices powering up, plus the
delay through all of the devices. The final application connection time assumes that connections to
ALL of the I/O devices on the tool have been established.

The following figure shows the events, states, and sequence in which a controller shall discontinue
communications with a device on a given tool and then establish a connection to a device on a
new tool. Note: There can be multiple I/O devices on the tool. This sequence is repeated for each
connection from the controller to the I/O devices on the tool.

Appendix 163/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Figure 26: Quick Connect System Sequence Diagram

There are two classes of Quick Connect devices.

 Class A Quick Connect target devices is able to power-up, send the first Gratuitous ARP
packet, and be ready to accept a TCP connection in less than 350ms.

 Class B Quick Connect target devices shall be able to power-up, send the first Gratuitous
ARP packet, and be ready to accept a TCP connection in less than 2 seconds.

6.4.2 Requirements
EtherNet/IP target devices supporting Quick Connect must adhere to the following requirements:

 In order to be able to establish a physical link as fast as possible all Ethernet ports shall be
set to 100 MBit/s and full duplex

 When in Quick Connect mode Quick Connect devices shall not use Auto-MDIX (detection of
the required cable connection type)

 To enable the use of straight-thru cables when Auto-MIDX is disabled, the following rules
shall be applied:

A. On a device with only one port: the port shall be configured as MDI.

B. On devices with 2 external Ethernet ports:

The labels for the 2 external ports shall include an ordinal indication (e.g.: Port 1
and Port 2, or A and B)

The port with the lower ordinal indication shall be configured as MDI.

The port with the upper ordinal indication shall be configured as MDIX.

 The target device shall support EtherNet/IP Quick Connect attribute (12) in the TCP/IP
Object that enables the Quick Connect feature.

 The target device shall have the Quick Connect keywords and values included in the
device’s EDS file.

Appendix 164/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

6.5 Hilscher specific CIP services

6.5.1 Common

6.5.1.1 Reset Object (0xFF32)

The Hilscher specific “Reset” service sets the whole object back to its initial state.

Request Service Data Field Parameters:

There are no request service data parameters.

Success Response Service Data Field Parameters:

There are no response service data parameters.

6.5.1.2 Get Attribute Option (0xFF33)

The Hilscher specific “Get Attribute Option” service returns the option flags of the specified
attribute.

Request Service Data Field Parameters:

There are no request service data parameters.

Success Response Service Data Field Parameters:

Name Byte Size Description

Option Flags 2

 /* Flags for access control */
 #define CIP_FLG_SET_ACCESS_BUS 0x0000
 #define CIP_FLG_SET_ACCESS_USER 0x0010
 #define CIP_FLG_SET_ACCESS_ADMIN 0x0020
 #define CIP_FLG_SET_ACCESS_NONE 0x0030

 #define CIP_FLG_GET_ACCESS_BUS 0x0000
 #define CIP_FLG_GET_ACCESS_USER 0x0040
 #define CIP_FLG_GET_ACCESS_ADMIN 0x0080
 #define CIP_FLG_GET_ACCESS_NONE 0x00C0

 #define CIP_FLG_NOTIFICATION_ENABLE 0x4000
 #define CIP_FLG_ATTRIBUTE_DISABLE 0x8000

Table 130: Hilscher Service – Get Attribute Option – Response Data Parameters

Appendix 165/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

6.5.1.3 Set Attribute Option (0xFF34)

The Hilscher specific “Set Attribute Option” service writes the option flags of the specified attribute.

Request Service Data Field Parameters:

Name Byte Size Description

Option Mask 2

This mask allows setting specific option flags without touching other flags that
are not of interest.

In this mask field set the bits that correspond to the flags you want to set in the
field “Option flags”.

Option Flags 2

 /* Flags for access control */
 #define CIP_FLG_SET_ACCESS_BUS 0x0000
 #define CIP_FLG_SET_ACCESS_USER 0x0010
 #define CIP_FLG_SET_ACCESS_ADMIN 0x0020
 #define CIP_FLG_SET_ACCESS_NONE 0x0030

 #define CIP_FLG_GET_ACCESS_BUS 0x0000
 #define CIP_FLG_GET_ACCESS_USER 0x0040
 #define CIP_FLG_GET_ACCESS_ADMIN 0x0080
 #define CIP_FLG_GET_ACCESS_NONE 0x00C0

 #define CIP_FLG_NOTIFICATION_ENABLE 0x4000
 #define CIP_FLG_ATTRIBUTE_DISABLE 0x8000

Table 131: Hilscher Service – Set Attribute Option – Request Data Parameters

Success Response Service Data Field Parameters:

There are no response service data parameters.

6.5.2 Assembly Object

6.5.2.1 Create (0x0401)

The Hilscher specific “Create” service creates a new assembly instance.

Request Service Data Field Parameters:

Name Byte Size Description

Assembly Instance
ID

4 CIP Instance ID

Minimum Size 2 The minimum and maximum size fields define the connection size range that is
allowed for this assembly instance.

Example:

1) Min Size = 4 and Max Size = 4:
The connection size MUST be 4. No other size is allowed.

2) Min Size = 2 and Max Size = 16:
The connection size can be between 2 and 16. If it is 2, then only the
first 2 bytes of this assembly are transmitted via the connection.

Maximum Size 2

Parameter Flags 2
 #define CIP_AS_PARAM_FIX_SIZE 0x0001

Appendix 166/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Name Byte Size Description

 #define CIP_AS_PARAM_TYPE_MSK 0xF000
 #define CIP_AS_PARAM_TYPE_CONSUMER 0x0000
 #define CIP_AS_PARAM_TYPE_PRODUCER 0x1000
 #define CIP_AS_PARAM_TYPE_HB_LISTENONLY 0x2000
 #define CIP_AS_PARAM_TYPE_HB_INPUTONLY 0x3000
 #define CIP_AS_PARAM_TYPE_CONFIG 0x4000

 #define CIP_AS_PARAM_RT_FORMAT_MSK 0x0F00
 #define CIP_AS_PARAM_RT_FORMAT_PURE 0x0000
 #define CIP_AS_PARAM_RT_FORMAT_NULL 0x0100
 #define CIP_AS_PARAM_RT_FORMAT_HB 0x0300
 #define CIP_AS_PARAM_RT_FORMAT_RUNIDLE 0x0400
 #define CIP_AS_PARAM_RT_FORMAT_SAFETY 0x0500

Table 132: Hilscher Service – Create – Request Data Parameters

Success Response Service Data Field Parameters:

There are no response service data parameters.

6.5.2.2 Delete (0x0402)

The Hilscher specific “Delete” service deletes an assembly instance.

Request Service Data Field Parameters:

There are no request service data parameters.

Success Response Service Data Field Parameters:

There are no response service data parameters.

6.5.2.3 Add Member (0x0403)

The Hilscher specific “Add member” service adds a member to a specific assembly instance.

Request Service Data Field Parameters:

Name Byte Size Description

Data Size 2
Number of bytes this member occupies (e.g. the byte size of the attribute the
path points to).

Path Size 2 Size of path in bytes (maximum number is 9)

Path max. 9

CIP Path to member. Either 8 bit or 16 bit encoded. Encoding is based on the
packed EPATH format described in the CIP specification (Volume 1 Edition
3.16. chapter C-1.4.2).

Example:

1) 8 Bit:

[20][08][24][01][30][0C]

Class 8, Instance 1, Attribute 12

2) 16 Bit:

Appendix 167/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Name Byte Size Description

[21] [10] [00] [25] [02] [00] [31] [0C] [00]

Class 16, Instance 2, Attribute 12
Table 133: Hilscher Service – Add Member – Request Data Parameters

Success Response Service Data Field Parameters:

There are no response service data parameters.

6.5.2.4 Delete Member (0x0404)

The Hilscher specific “Delete Member” service deletes an assembly member.

Request Service Data Field Parameters:

Name Byte Size Description

Path Size 2 Size of path in bytes (maximum number is 9)

Path max. 9

CIP Path to member. Either 8 bit or 16 bit encoded. Encoding is based on the
packed EPATH format described in the CIP specification (Volume 1 Edition
3.16. chapter C-1.4.2).

Example:

3) 8 Bit:

[20][08][24][01][30][0C]

Class 8, Instance 1, Attribute 12

4) 16 Bit:

[21] [10] [00] [25] [02] [00] [31] [0C] [00]

Class 16, Instance 2, Attribute 12
Table 134: Hilscher Service – Add Member – Request Data Parameters

Success Response Service Data Field Parameters:

There are no response service data parameters.

Appendix 168/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

6.6 List of Figures
Figure 1: Default Hilscher Device Object Model .. 12
Figure 2: Configuration Sequence Using the Basic Configuration Set .. 44
Figure 3: Configuration Sequence Using the Extended Packet Set .. 47
Figure 4: Non-Volatile CIP Object Attributes ... 48
Figure 5: Sequence Diagram for the EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ/CNF Packet 50
Figure 6: Sequence diagram for the EIP_APS_SET_PARAMETER_REQ/CNF packet ... 60
Figure 7: Sequence Diagram for the EIP_APS_CONFIG_DONE_REQ/CNF Packet .. 63
Figure 8: Sequence Diagram for the EIP_OBJECT_MR_REGISTER_REQ/CNF Packet for the Stack Packet Set 65
Figure 9: Sequence Diagram for the EIP_OBJECT_AS_REGISTER_REQ/CNF Packet for the Stack Packet Set 69
Figure 10: Sequence Diagram for the EIP_OBJECT_ID_SETDEVICEINFO_REQ/CNF Packet for the Stack Packet Set 74
Figure 11: Sequence Diagram for the EIP_OBJECT_REGISTER_SERVICE_REQ/CNF Packet for the Stack Packet Set 79
Figure 12: Sequence Diagram for the EIP_OBJECT_CIP_SERVICE_REQ/CNF Packet for the Stack Packet Set 88
Figure 13: Sequence Diagram for the EIP_OBJECT_RESET_IND/RES Packet for the Basic Packet Set 95
Figure 14: Sequence Diagram for the EIP_OBJECT_CONNECTION_IND/RES Packet for the Stack Packet Set 102
Figure 15: Sequence Diagram for the EIP_OBJECT_CL3_SERVICE_IND/RES Packet for the Stack Packet Set 111
Figure 16: Sequence Diagram for the EIP_OBJECT_CL3_SERVICE_IND/RES (Sequence Count Handling– Use case 1)

... 113
Figure 17: Sequence Diagram for the EIP_OBJECT_CL3_SERVICE_IND/RES (Sequence Count Handling– Use case 2)

... 114
Figure 18: Sequence Diagram for the EIP_OBJECT_CL3_SERVICE_IND/RES (Sequence Count Handling – Use case 3)

... 115
Figure 19: Sequence Diagram for the EIP_OBJECT_CL3_SERVICE_IND/RES (Sequence Count Handling– Use case 4)

... 116
Figure 20: Sequence Diagram for the EIP_OBJECT_CIP_OBJECT_CHANGE_IND/RES Packet for the Stack Packet Set

... 120
Figure 21: Packet sequence for Forward_Open forwarding functionality .. 127
Figure 22: Packet sequence for Forward_Close forwarding functionality .. 136
Figure 23: Sequence Diagram for the EIP_APS_GET_MS_NS_REQ/CNF Packet ... 141
Figure 24: TOS Byte in IP v4 Frame Definition ... 152
Figure 25: Ethernet Frame with IEEE 802.1Q Header .. 153
Figure 26: Quick Connect System Sequence Diagram ... 163

Appendix 169/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

6.7 List of Tables
Table 1: List of Revisions .. 5
Table 2: Terms, Abbreviations and Definitions .. 8
Table 3: Introduction of Class Attribute Description .. 13
Table 4: Introduction of Instance Attribute Description .. 14
Table 5: Introduction of Service Description .. 14
Table 6: Identity Object - Class Attributes ... 15
Table 7: Identity Object - Instance Attributes... 15
Table 8: Identity Object - Common Services ... 16
Table 9: Identity Object - Hilscher Specific Services ... 16
Table 10: Message Router Object - Class Attributes .. 17
Table 11: Message Router Object - Common Services .. 17
Table 12: Message Router Object - Hilscher Specific Services .. 18
Table 13: Assembly Object - Class Attributes ... 19
Table 14: Assembly Object - Instance Attributes ... 19
Table 15: Assembly Object - Common Services ... 20
Table 16: Assembly Object - Hilscher Specific Services ... 20
Table 17: Connection Manager Object - Class Attributes.. 21
Table 18: Connection Manager Object - Instance Attributes ... 21
Table 19: Connection Manager Object - Common Services ... 21
Table 20: Connection Manager Object - Hilscher Specific Services ... 22
Table 21: Time Sync Object - Class Attributes .. 23
Ta19ble 22: Time Sync Object - Instance Attributes ... 24
Table 23: Time Sync Object - Common Services .. 25
Table 24: Time Sync Object - Hilscher Specific Services .. 25
Table 25: Time Sync Object – Attribute 300 .. 26
Table 26: DLR Object - Class Attributes... 27
Table 27: DLR Object - Instance Attributes .. 27
Table 28: DLR Object - Common Services ... 28
Table 29: DLR Object - Hilscher Specific Service ... 28
Table 30: QoS Object - Class Attributes... 29
Table 31: QoS Object - Instance Attributes .. 29
Table 32: Quality of Service Object - Common Services .. 30
Table 33: Quality of Service Object - Hilscher Specific Service .. 30
Table 34: TCP/IP Interface Object - Class Attributes ... 31
Table 35: TCP/IP Interface Object - Instance Attributes ... 32
Table 36: TCP/IP Interface Object - Common Services .. 32
Table 37: TCP/IP Interface Object - Hilscher Specific Services .. 32
Table 38: Ethernet Link Object - Class Attributes .. 33
Table 39: Ethernet Link Object - Instance Attributes ... 34
Table 40: Ethernet Link Object - Common Services ... 34
Table 41: Ethernet Link Object – Class-Specific Services... 34
Table 42: Ethernet Link Object - Hilscher Specific Services .. 35
Table 43: Predefined Connection Object - Class Attributes .. 36
Table 44: Predefined Connection Object - Instance Attributes .. 36
Table 45: Predefined Connection Object - Common Services .. 37
Table 46: Predefined Connection Object - Hilscher Specific Services .. 37
Table 47: IO Mapping Object - Class Attributes .. 38
Table 48: IO Mapping Object - Instance Attributes .. 38
Table 49: IO Mapping Object - Common Services .. 38
Table 50: IO Mapping Object - Hilscher Specific Services .. 39
Table 51: Configuration Sets ... 41
Table 52: Basic Configuration Set - Configuration Packets ... 42
Table 53: Additional Request Packets Using the Basic Configuration Set .. 42
Table 54: Indication Packets Using the Basic Configuration Set ... 43
Table 55: Extended Configuration Set - Configuration Packets .. 45
Table 56: Additional Request Packets Using the Basic Configuration Set .. 45
Table 57: Indication Packets Using the Extended Packet Set ... 46
Table 58: Overview over the configuration packets of the EtherNet/IP Adapter .. 49
Table 59: EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_REQ – Set Configuration Parameters Request ... 52
Table 60: EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_REQ – Configuration Parameter Set V3 56
Table 61: Meaning of Contents of Flags Area ... 57
Table 62: Input Assembly Flags/ Output Assembly Flags ... 58
Table 63: EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_CNF – Set Configuration Parameters Confirmation

... 59
Table 64: EIP_APS_SET_PARAMETER_REQ Flags .. 60
Table 65: EIP_APS_SET_PARAMETER_REQ – Set Parameter Flags Request .. 61

Appendix 170/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Table 66: EIP_APS_SET_PARAMETER_CNF – Confirmation to Set Parameter Flags Request .. 62
Table 67: EIP_APS_CONFIG_DONE_REQ – Signal end of configuration request .. 63
Table 68: EIP_APS_CONFIG_DONE_CNF – Confirmation of end of configuration Request .. 64
Table 69: Address Ranges for the ulClass parameter ... 65
Table 70: EIP_OBJECT_MR_REGISTER_REQ – Request Command for register a new class object 67
Table 71: EIP_OBJECT_MR_REGISTER_CNF – Confirmation Command of register a new class object 67
Table 72: Assembly Instance Number Ranges ... 68
Table 73: EIP_OBJECT_AS_REGISTER_REQ – Request Command for create an Assembly Instance 70
Table 74: Assembly Instance Property Flags .. 71
Table 75: EIP_OBJECT_AS_REGISTER_CNF – Confirmation Command of register a new class object 73
Table 76: EIP_OBJECT_ID_SETDEVICEINFO_REQ – Request Command for open a new connection 76
Table 77: EIP_OBJECT_ID_SETDEVICEINFO_CNF – Confirmation Command of setting device information 78
Table 78: EIP_OBJECT_READY_REQ - Register Service .. 80
Table 79: EIP_OBJECT_READY_CNF – Confirmation Command for Register Service Request 81
Table 80: EIP_OBJECT_SET_PARAMETER_REQ – Packet Status/Error ... 82
Table 81: EIP_OBJECT_SET_PARAMETER_REQ – Set Parameter Request Packet ... 83
Table 82: EIP_OBJECT_SET_PARAMETER_CNF – Set Parameter Confirmation Packet .. 84
Table 83: Generic Error (Variable ulGRC)... 85
Table 84: Extended error codes for the connection manager .. 87
Table 85: EIP_OBJECT_CIP_SERVICE_REQ – CIP Service Request .. 89
Table 86: EIP_OBJECT_CIP_SERVICE_CNF – Confirmation to CIP Service Request .. 91
Table 87 RCX_SET_FW_PARAMETER_REQ ParameterID .. 92
Table 88: Overview over the indications of the EtherNet/IP Adapter ... 93
Table 89: Allowed Values of ulResetTyp ... 94
Table 90: EIP_OBJECT_RESET_IND – Reset Request from Bus Indication .. 96
Table 91: EIP_OBJECT_RESET_RES – Response to Indication to Reset Request .. 97
Table 92: Meaning of variable ulConnectionState .. 98
Table 93: Meaning of variable bConnType ... 98
Table 94: Meaning of Variable bPriority .. 99
Table 95: Coding of Timeout Multiplier Values .. 100
Table 96: Meaning of Variable bTriggerType .. 100
Table 97: Meaning of Variable usOTConnParam.. 100
Table 98: Priority ... 101
Table 99: Connection Type ... 101
Table 100: Priority ... 102
Table 101: EIP_OBJECT_CONNECTION_IND – Indication of Connection .. 105
Table 102: Specified Ranges of numeric Values of Service Codes (Variable ulService) ... 108
Table 103: Service Codes for the Common Services according to the CIP specification .. 109
Table 104: Most common General Status Codes .. 110
Table 105: Service Indication Use Cases and Sequence Count Handling .. 112
Table 106: EIP_OBJECT_CL3_SERVICE_IND - Indication of acyclic Data Transfer.. 118
Table 107: EIP_OBJECT_CL3_SERVICE_RES – Response to Indication of acyclic Data Transfer 119
Table 108: EIP_OBJECT_CIP_OBJECT_CHANGE_IND – CIP Object Change Indication ... 121
Table 109: EIP_OBJECT_CIP_OBJECT_CHANGE_RES – Response to CIP Object Change Indication 122
Table 110: RCX_LINK_STATUS_CHANGE_IND_T - Link Status Change Indication.. 124
Table 111: Structure RCX_LINK_STATUS_CHANGE_IND_DATA_T .. 124
Table 112: RCX_LINK_STATUS_CHANGE_RES_T - Link Status Change Response ... 125
Table 113:EIP_OBJECT_LFWD_OPEN_FWD_IND – Forward_Open indication ... 129
Table 114: EIP_CM_APP_LFWOPEN_IND_T - Forward_Open request data .. 130
Table 115: EIP_OBJECT_LFWD_OPEN_FWD_RES – Response of Forward_Open indication ... 131
Table 116: EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND – Forward_Open completion indication 133
Table 117: EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_RES – Response of Forward_Open completion indication .. 134
Table 118:EIP_OBJECT_FWD_CLOSE_FWD_IND – Forward_Close request indication.. 138
Table 119: EIP_CM_APP_FWCLOSE_IND_T - Forward_Close request data.. 138
Table 120: EIP_OBJECT_FWD_CLOSE_FWD_RES – Response of Forward_Close indication ... 139
Table 121: Overview over the additional services of the EtherNet/IP Adapter .. 140
Table 122: EIP_APS_GET_MS_NS_REQ – Get Module Status/ Network Status Request ... 142
Table 123: EIP_APS_GET_MS_NS_CNF – Confirmation of Get Module Status/ Network Status Request 143
Table 124: Status/Error Codes of EtherNet/IP Stack .. 147
Table 125: General Error Codes according to CIP Standard .. 149
Table 126: Possible values of the Module Status .. 150
Table 127: Possible values of the Network Status .. 151
Table 128: Default Assignment of DSCPs in EtherNet/IP ... 153
Table 129: Default Assignment of 802.1D/Q Priorities in EtherNet/IP ... 154
Table 130: Hilscher Service – Get Attribute Option – Response Data Parameters ... 164
Table 131: Hilscher Service – Set Attribute Option – Request Data Parameters .. 165

Appendix 171/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Table 132: Hilscher Service – Create – Request Data Parameters .. 166
Table 133: Hilscher Service – Add Member – Request Data Parameters ... 167
Table 134: Hilscher Service – Add Member – Request Data Parameters ... 167

Appendix 172/172

EtherNet/IP Adapter | Protocol API
DOC150401API03EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

6.8 Contacts

Headquarters

Germany
Hilscher Gesellschaft für
Systemautomation mbH
Rheinstrasse 15
65795 Hattersheim
Phone: +49 (0) 6190 9907-0
Fax: +49 (0) 6190 9907-50
E-Mail: info@hilscher.com
Support
Phone: +49 (0) 6190 9907-99
E-Mail: de.support@hilscher.com

Subsidiaries

China
Hilscher Systemautomation (Shanghai) Co. Ltd.
200010 Shanghai
Phone: +86 (0) 21-6355-5161
E-Mail: info@hilscher.cn
Support
Phone: +86 (0) 21-6355-5161
E-Mail: cn.support@hilscher.com

France
Hilscher France S.a.r.l.
69500 Bron
Phone: +33 (0) 4 72 37 98 40
E-Mail: info@hilscher.fr
Support
Phone: +33 (0) 4 72 37 98 40
E-Mail: fr.support@hilscher.com

India
Hilscher India Pvt. Ltd.
Pune, Delhi, Mumbai
Phone: +91 8888 750 777
E-Mail: info@hilscher.in

Italy
Hilscher Italia S.r.l.
20090 Vimodrone (MI)
Phone: +39 02 25007068
E-Mail: info@hilscher.it
Support
Phone: +39 02 25007068
E-Mail: it.support@hilscher.com

Japan
Hilscher Japan KK
Tokyo, 160-0022
Phone: +81 (0) 3-5362-0521
E-Mail: info@hilscher.jp
Support
Phone: +81 (0) 3-5362-0521
E-Mail: jp.support@hilscher.com

Korea
Hilscher Korea Inc.
Seongnam, Gyeonggi, 463-400
Phone: +82 (0) 31-789-3715
E-Mail: info@hilscher.kr

Switzerland
Hilscher Swiss GmbH
4500 Solothurn
Phone: +41 (0) 32 623 6633
E-Mail: info@hilscher.ch
Support
Phone: +49 (0) 6190 9907-99
E-Mail: ch.support@hilscher.com

USA
Hilscher North America, Inc.
Lisle, IL 60532
Phone: +1 630-505-5301
E-Mail: info@hilscher.us
Support
Phone: +1 630-505-5301
E-Mail: us.support@hilscher.com

mailto:info@hilscher.com
mailto:de.support@hilscher.com
mailto:info@hilscher.cn
mailto:cn.support@hilscher.com
mailto:info@hilscher.fr
mailto:fr.support@hilscher.com
mailto:info@hilscher.in
mailto:info@hilscher.it
mailto:it.support@hilscher.com
mailto:info@hilscher.jp
mailto:jp.support@hilscher.com
mailto:info@hilscher.kr
mailto:info@hilscher.ch
mailto:ch.support@hilscher.com
mailto:info@hilscher.us
mailto:us.support@hilscher.com

	1 Introduction
	1.1 Abstract
	1.2 List of Revisions
	1.3 System Requirements
	1.4 Intended Audience
	1.5 Specifications
	1.5.1 Technical Data
	1.5.2 Limitations

	1.6 Terms, Abbreviations and Definitions
	1.7 References
	1.8 Legal Notes
	1.8.1 Copyright
	1.8.2 Important Notes
	1.8.3 Exclusion of Liability
	1.8.4 Export

	2 Available CIP Classes in the Hilscher EtherNet/IP Stack
	2.1 Introduction
	2.1.1 Class Attributes
	2.1.2 Instance Attributes
	2.1.3 Services

	2.2 Identity Object (Class Code: 0x01)
	2.2.1 Class Attributes
	2.2.2 Instance Attributes
	2.2.3 Supported Services
	2.2.3.1 Common services coming from the EtherNet/IP network or host application
	2.2.3.2 Hilscher specific services coming from the host application

	2.3 Message Router Object (Class Code: 0x02)
	2.3.1 Class Attributes
	2.3.2 Instance Attributes
	2.3.3 Supported Services
	2.3.3.1 Common services coming from the EtherNet/IP network or host application
	2.3.3.2 Hilscher specific services coming from the host application

	2.4 Assembly Object (Class Code: 0x04)
	2.4.1 Class Attributes
	2.4.2 Instance Attributes
	2.4.3 Supported Services
	2.4.3.1 Common services coming from the EtherNet/IP network or host application
	2.4.3.2 Hilscher specific services coming from the host application

	2.5 Connection Manager Object (Class Code: 0x06)
	2.5.1 Class Attributes
	2.5.2 Instance Attributes
	2.5.3 Supported Services
	2.5.3.1 Common services coming from the EtherNet/IP network or host application
	2.5.3.2 Hilscher specific services coming from the host application

	2.6 Time Sync Object (Class Code: 0x43)
	2.6.1 Class Attributes
	2.6.2 Instance Attributes
	2.6.3 Supported Services
	2.6.3.1 Common services coming from the EtherNet/IP network or host application
	2.6.3.2 Hilscher specific services coming from the host application

	2.6.4 Instance Attributes
	2.6.4.1 Attribute 300 - Sync Parameters

	2.7 Device Level Ring Object (Class Code: 0x47)
	2.7.1 Class Attributes
	2.7.2 Instance Attributes
	2.7.3 Supported Services
	2.7.3.1 Common services coming from the EtherNet/IP network or host application
	2.7.3.2 Hilscher specific services coming from the host application

	2.8 Quality of Service Object (Class Code: 0x48)
	2.8.1 Class Attributes
	2.8.2 Instance Attributes
	2.8.3 Supported Services
	2.8.3.1 Common services coming from the EtherNet/IP network or host application
	2.8.3.2 Hilscher specific services coming from the host application

	2.9 TCP/IP Interface Object (Class Code: 0xF5)
	2.9.1 Class Attributes
	2.9.2 Instance Attributes
	2.9.3 Supported Services
	2.9.3.1 Common services coming from the EtherNet/IP network or host application
	2.9.3.2 Hilscher specific services coming from the host application

	2.10 Ethernet Link Object (Class Code: 0xF6)
	2.10.1 Class Attributes
	2.10.2 Instance Attributes
	2.10.3 Supported Services
	2.10.3.1 Common services coming from the EtherNet/IP network or host application
	2.10.3.2 Class-Specific services coming from the EtherNet/IP network or host application
	2.10.3.3 Hilscher specific services coming from the host application

	2.11 Predefined Connection Object (Class Code: 0x401)
	2.11.1 Class Attributes
	2.11.2 Instance Attributes
	2.11.3 Supported Services
	2.11.3.1 Common services coming from the EtherNet/IP network or host application
	2.11.3.2 Hilscher specific services coming from the host application

	2.12 IO Mapping Object (Class Code: 0x402)
	2.12.1 Class Attributes
	2.12.2 Instance Attributes
	2.12.3 Supported Services
	2.12.3.1 Common services coming from the EtherNet/IP network or host application
	2.12.3.2 Hilscher specific services coming from the host application

	3 Getting Started/ Configuration
	3.1 Configuration Procedures
	3.1.1 Using the Configuration Tool SYCON.net
	3.1.2 Using the netX configuration and diagnostic utility
	3.1.3 Using the Packet API of the EtherNet/IP Protocol Stack

	3.2 Configuration Using the Packet API
	3.2.1 Basic Configuration Set
	3.2.1.1 Configuration Packets
	3.2.1.2 Optional Request Packets
	3.2.1.3 Indication Packets the Host Application Needs to Handle
	3.2.1.4 Configuration Sequence

	3.2.2 Extended Configuration Set
	3.2.2.1 Configuration Packets
	3.2.2.2 Optional Request Packets
	3.2.2.3 Indication Packets the Host Application Needs to Handle
	3.2.2.4 Configuration Sequence

	3.3 Example Configuration Process
	3.3.1 Handling of Configuration Data Changes

	4 The Application Interface
	4.1 Configuring the EtherNet/IP Adapter
	4.1.1 Configure the Device with Configuration Parameter
	4.1.2 Set Parameter Flags
	4.1.3 Finish configuration of CIP Objects
	4.1.4 Register an additional Object Class at the Message Router
	4.1.5 Register a new Assembly Instance
	4.1.6 Set the Device’s Identity Information
	4.1.7 Register Service
	4.1.8 Set Parameter
	4.1.9 CIP Service Request
	4.1.10 Set Watchdog Time
	4.1.11 Register Application
	4.1.12 Start/Stop Communication
	4.1.13 Channel Init
	4.1.14 Modify Firmware Parameter

	4.2 Acyclic events indicated by the stack
	4.2.1 Indication of a Reset Request from the network
	4.2.2 Connection State Change Indication
	4.2.3 Indication of acyclic Data Transfer
	4.2.4 CIP Object Change Indication
	4.2.5 Link Status Change
	4.2.6 Forward_Open Indication
	4.2.7 Forward_Open_Completion Indication
	4.2.8 Forward_Close Indication

	4.3 Additional services requested by the application
	4.3.1 Get Module Status/ Network Status
	4.3.2 Get Watchdog Time
	4.3.3 Get DPM I/O Information
	4.3.4 Unregister Application
	4.3.5 Delete Configuration
	4.3.6 Lock/Unlock Configuration
	4.3.7 Get Firmware Parameter
	4.3.8 Get Firmware Identification

	5 Status/Error Codes Overview
	5.1 Stack Specific Error Codes
	5.2 General EtherNet/IP Error Codes

	6 Appendix
	6.1 Module and Network Status
	6.1.1 Module Status
	6.1.2 Network Status

	6.2 Quality of Service (QoS)
	6.2.1 Introduction
	6.2.2 DiffServ
	6.2.3 802.1D/Q Protocol
	6.2.4 The QoS Object
	6.2.4.1 Enable 802.1Q (VLAN tagging)

	6.3 DLR
	6.3.1 Ring Supervisors
	6.3.2 Precedence Rule for Multi-Supervisor Operation
	6.3.3 Beacon and Announce Frames
	6.3.4 Ring Nodes
	6.3.5 Normal Network Operation
	6.3.6 Rapid Fault/Restore Cycles
	6.3.7 States of Supervisor

	6.4 Quick Connect
	6.4.1 Introduction
	6.4.2 Requirements

	6.5 Hilscher specific CIP services
	6.5.1 Common
	6.5.1.1 Reset Object (0xFF32)
	6.5.1.2 Get Attribute Option (0xFF33)
	6.5.1.3 Set Attribute Option (0xFF34)

	6.5.2 Assembly Object
	6.5.2.1 Create (0x0401)
	6.5.2.2 Delete (0x0402)
	6.5.2.3 Add Member (0x0403)
	6.5.2.4 Delete Member (0x0404)

	6.6 List of Figures
	6.7 List of Tables
	6.8 Contacts

