y 4
hilscher

COMVMPETENCE IN
COMMUNICATION

Protocol API
EtherNet/IP Adapter

V3.3.0

www.hilscher.com
DOC150401APIO3EN | Revision 3 | English | 2016-01 | Released | Public

Introduction 2/172

Table of Contents

1 Ta) oo 1V [o3 110 o I PP 5
O R AN o1 1= Tox S PSPPI 5
R W () o) =Y T o] USRS 5
O Yy (=] I = =T UL =T o 1= o R 5
R A 1 1 (=T oo [=To I W (o 11T o o] PSPPSR 5
R T o = = o) SRS 6

1.5.1 TECHNICAI DAIAeeeiiiiiieieeiee ittt et e e sttt e s bt e e e shb et e e anbb e e e sbbe e e s sab e e e e anbneeenan 6
R Y07 1 1 = Vi (o] o PO OPPUPRPR 7
1.6 Terms, Abbreviations and DefinitioNScoiiiiiiiiiii e e 8
O A = (= (=] 1T o Tod S PSPPSRSO 9
S T I = - | N [(=PSRN 10
R 200 R @7o)Y/ 4 o | o | SRR PPRRPRN 10
1.8.2 IMPOMANT NOTES 10
1.8.3 EXCIUSION OF LIGDIIILYeeeeiieei ettt ettt e e e e e sttt e e e e e e anbbeeeeeaeeeannees 11
L 8id X O e 11

2 Available CIP Classes in the Hilscher EtherNet/IP StacKoooevvviiviiiiiiiiiiiieiiieeeeeeeeeeeeeeeeeeeeee, 12

P2 R 1o To (U1 o T o DO PP PTPRPRPPPRR 12
2. 1.1 ClaSS ALLHDULES ...ttt e ettt e e e e e ettt e e e e e e e snnbre e e e e e e e e annneaneaaaean 13

2.1.2 INSEANCE AHIIDULES ... ettt ettt ettt e e e e e ettt e e e e e e e n b beeeeeaaeeaannanseeaaeeeaannneneeaaaean 14

P R T 1= o[t T O PP TP RPPPR PP 14

2.2 Identity Object (Class Code: OXOL)cceiiiiiiiiiiieeeee ittt e e ettt e e e e e e bbb e e e e e e e e sansbabeeeaae s e e aannrees 15
2.2.1 ClaSS AHDULESeeiieieeiie ettt e e et e e s bt e b e e e et b e et e e abee s 15

2.2.2 INSEANCE AHMIDULESceeeieeiit ettt e e et e e s bttt e e kb et e e anbb e e sbte e e s nebeee s 15

A G B YU o] oTo] ¢ (=0 IST=T A (o =L PSP 16
2.2.3.1 Common services coming from the EtherNet/IP network or host application................... 16

2.2.3.2 Hilscher specific services coming from the host applicationcccccooiiiiiiiieiiiniiine.. 16

2.3 Message Router Object (Class Code: OX02)ccoiievrrieireeeiiiiiiieeeeeeesesrnreeeree e e s snnranereeeesseannnens 17
2.3.1 ClaSS ALHDULES ..ottt ettt e e e e e e ettt e e e e e s b re e e e e e e e e annneaneaaaean 17

2.3.2 INSEANCE AHIIDULES ...ttt ettt ettt e e e e e ettt e e e e e e e ntbeeeeea e e e aannabeeeaaeeeaannnnnneaaaean 17

PR B B W o] oTo] g (=T IRST=T 4 (o L USROS 17
2.3.3.1 Common services coming from the EtherNet/IP network or host application................... 17

2.3.3.2 Hilscher specific services coming from the host applicationc.ccccoeviivierieer i, 18

2.4 Assembly Object (Class COAe: OXO04)cuuuiiiiieeaeiiiiiieee e ettt e e e et e e e e e e e s enbebeeeaa e e e e annbees 19
2,41 ClaSS AHDULESeeiieieiiie ittt ettt e et e e s bt e ek e e e et e et e e aree s 19

2.4.2 INSANCE AHMDULES.eeiieiieiee ettt e e et e e s bttt e s kbt e e anb b e e e snbe e e s nbneee s 19

P B YW o] oTo] £ (=0 BT A (o =L P SUP PP 20
2.4.3.1 Common services coming from the EtherNet/IP network or host application................... 20

2.4.3.2 Hilscher specific services coming from the host applicationcccccooeiiiiiiieininiinee.. 20

2.5 Connection Manager Object (Class Code: OX06)ueeveeeriiiiiieireeeeeiiiinirrrreeeeessrnrereeeeesesnnneens 21
2.5.1 ClasS ALHDULESeeiieeiee ettt ettt e e e e e ettt e e e e e e e b er e e e e e e e eannnenneaaaeean 21

2.5.2 INSEANCE AHIIDULES ...ttt ettt e e e e e ettt e e e e e e e nbbeeeeeaeeeaannaseeeaaeeeaannneneeaaaaan 21

A BT U o] oTo] g (=T IRST=T 4 (o L PRSP 21
2.5.3.1 Common services coming from the EtherNet/IP network or host application................... 21

2.5.3.2 Hilscher specific services coming from the host applicationc.ccccoeviiiiiieeiiiicinenn.. 22

2.6 Time Sync Object (Class Code: OXA3)uuuuiiiiaaaaiiiiieeea e ettt e e e e e arbbe e e e e e e e e sanbaaeeeaae s s e sannrees 23
2.6.1 ClaSS AHMDULESeeiieieiiieieie ettt e et e sttt b e e et e e et ee s 23

2.6.2 INSTANCE AHMIDULES.c..eeiiiiitiee ettt e e et e e s bttt e sk e e e e anb b e e e snbe e e nbbeee s 23

AT B YW o] oTo] g (=0 IST=T A (o =L PSP 25
2.6.3.1 Common services coming from the EtherNet/IP network or host application................... 25

2.6.3.2 Hilscher specific services coming from the host applicationcccccooiiiiiiiieeniniiine. 25

2.6.4 INSEANCE AHIIDULES ... ettt e ettt e e e e e et bttt e e e e e e e n b beeeeea e e e aannaeseeaaeeeaannneneeaaaaan 25
2.6.4.1 Attribute 300 - SYNC ParamEtersScoiiiiiiiiiiiiiee ettt e et e e e e e aeee s 25

2.7 Device Level Ring Object (Class Code: OXA7)ccccccuurieeeeeeiiiiiieieeeeeesssiteteeeee e e s e snnsnneeeeeessesnnsens 27
2.7. 1 ClasS ALLHDULEScoeieeeeeee ettt ettt e e e e e ettt e e e e e e e s nbbre e e e e e e e eannneaneaaaean 27

2.7.2 INSEANCE AHIIDULES ... ettt e ettt e e e e e ettt e e e e e s e n b beeeeea e e aansasseeaaeesaannnenneaaaean 27

P T YW o] o To] £ (=0 IEST=T 4 (o =L RUP PP 28
2.7.3.1 Common services coming from the EtherNet/IP network or host application................... 28

2.7.3.2 Hilscher specific services coming from the host applicationc.ccccoevviiiiieeiiiiiinnnn.. 28

2.8 Quality of Service Object (Class Code: OXA8)......coiiuuiiiiiiaeiiaiiiiie et a e 29
2.8.1 ClaSS AHMDULESeeiieieiii ettt e et e s bttt b e et e e et e s 29

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Introduction 3/172

2.8.2 INSEANCE AHIIDULES ...ttt e ettt e e e e e ettt e e e e e e e ntbee e e e e e e e aannaeeeeaaeeeaannnnneeaaaean 29
P S I B YU o] oTo] g (=0 IEST=T 4 (o =L U SUPR PP 30
2.8.3.1 Common services coming from the EtherNet/IP network or host application................... 30
2.8.3.2 Hilscher specific services coming from the host applicationc.ccccoevviieiiees i, 30
2.9 TCPI/IP Interface Object (Class COde: OXFD)ccuiiiiiiiiiiea ittt e e 31
2.9.1 ClASS AIDULESveiiiriiiiie ittt e st e st e e s e e 31
2.9.2 INSEANCE AHIIDULES ...ttt ettt e e e e e ettt e e e e e s e ntbeeeeeaeeeaannaeeeeaaeesaannnenneaaaean 31
S BT W o] oTo] g (=T IRST=T 4 (o L RO UEOTPPRR 32
2.9.3.1 Common services coming from the EtherNet/IP network or host application................... 32
2.9.3.2 Hilscher specific services coming from the host applicationcccccooiiiiiiiieeniniinne.. 32
2.10 Ethernet Link Object (Class COde: OXFB)cuuuiiiiiiiiiiiiaae ittt e e e e 33
2.10.1 ClaSS ALLHDULESeeiieeiiii ettt e e e ettt e e e e e e n b ee e e e e e e e e nbbreeeeaeeeaannneneeaaaean 33
2.10.2 INSLANCE AMMIDULESc..viiiiieitie et e st e s re e s e neenne e 33
P O e IR YU T o] oTo] g (=0 IST=T 4 (o =L P SUO PP 34
2.10.3.1 Common services coming from the EtherNet/IP network or host application................. 34
2.10.3.2 Class-Specific services coming from the EtherNet/IP network or host application 34
2.10.3.3 Hilscher specific services coming from the host applicationc.cccooeiiiiininiinnen. 34
2.11 Predefined Connection Object (Class Code: OXA0L)uuveeeiiiiiiieiieeeeesiiiirreer e e e e s ssrareeeeee e s e snneens 36
2.11.0 ClAaSS ALLHDULES ...ttt e e e e ettt e e e e e e e n bttt e e e e e e e eanbbeeeeaaeeeaannnenneaaaean 36
2.11.2 INSEANCE AHIIDULES ...ttt e e oottt et e e e e e e et bttt e e e e e e e ntbeeeeea e e e sannaeseeaaeeeaannnnnneaaaean 36
P e IR {W o] o To] g (=T IRST=T A (o L SO SPPPER 36
2.11.3.1 Common services coming from the EtherNet/IP network or host application................. 36
2.11.3.2 Hilscher specific services coming from the host applicationcoeccvvviiieeiiiiiinnnn.. 37
2.12 10 Mapping Object (Class Code: OXA02)ueeiiiaiiiiiiiieaa e ettt e e e e aiebee e e e e e e e ssnbareeeaae e s e anneees 38
2.12.1 ClASS ALIDULESveeietiiiiie ettt et e sttt e st e e s e s beenne e 38
2.12.2 INSLANCE AMMIDULES ...ttt e et e et e e s beenne e 38
P e BT U o] oTo] g (=0 IST=T 4 (o =L O SUP PP 38
2.12.3.1 Common services coming from the EtherNet/IP network or host application................. 38
2.12.3.2 Hilscher specific services coming from the host applicationccccooeoiiiiiniiiinne. 39
3 Getting Started/ CoONfIQUIALTONt e e e e e e e e e e e e e e e e anneeees
% R O oo [0 Tir= 1 1[0] g I od €0 ToT=To [V =R
3.1.1 Using the Configuration Tool SYCON.net
3.1.2 Using the netX configuration and diagnostic utility
3.1.3 Using the Packet API of the EtherNet/IP Protocol Stack
3.2 Configuration UsiNg the PACKet APlccuuiiiiieiie et e e e e e e e e e e
3.2.1 BaSIC CONfIQUIALION SOooiiiiiiiiiiiiii ettt e e e e e et e e e e e e enbae e e e e e e e e eannnnnneaaaeaan
3.2.1.1 Configuration Packets............
3.2.1.2 Optional Request Packets
3.2.1.3 Indication Packets the Host Application Needs to Handle
3.2.1.4 Configuration SEQUENCEcceveeeiiiiiiiiieeeeeeiiiieee e e
3.2.2 Extended ConfigUration SEL.........cc.uuiiiieiiiiiiiiiiiee ettt e e e e e e s et e e e e e s st e e e e e e s sasbraeeaaaeaan
3.2.2.1 ConfIguration PACKELS...........eoiiiiiiiiiiii et e e et e e e e e nneaeee s
3.2.2.2 Optional Request Packets
3.2.2.3 Indication Packets the Host Application Needs to Handleccccccooiiiiiiieininiinnenn.
3.2.2.4 CoNnfIQuration SEOUENCEcoiiiiiiiiiieii ettt e ettt e e e e e e et e e e e e e e et e e e e e e e e annsaeeeas
3.3 Example Configuration PrOCESS.......iuii it iiiiiieiiee e e s ittt e e e s s s e e e e e s s st e e e e e e s snnnbaneeeeeessennnneens
3.3.1 Handling of Configuration Data ChanQesccei it ea e e
4 LTI Y o o1 Lotz U o I 1N (=1 o = U RSP
4.1 Configuring the EtherNEt/IP AGAPLETccccoiiiieiieieee ettt e e e e e e e e e e e e e e s s e eeeeeeeann
4.1.1 Configure the Device with Configuration Parameter............cccoi oo
4.1.2 Set Parameter FIagS.coo ittt e e e e et e e e e et e e e e e e e e nnra e e e e e e e e nnnraeeeas
4.1.3 Finish configuration of CIP Objects
4.1.4 Register an additional Object Class at the Message ROULETcoeveiiiiiiiiiiiee e
4.1.5 Register a New ASSEMDBIY INSTANCEciiiiiiiiiiiiiie e e e a e e e e sntaaee s
4.1.6 Set the Device’s Identity Information
4.1.7 Reqgister ServiCeccccceevviiiieereeeaenanns
4.1.8 SetParameterccccuvevveevveeeeeeeeeiennnnns
4.1.9 CIP Service Request..........cccceveeeeennnee
4.1.10 Set Watchdog Time..........ccccveeeeeeeennnens
4.1.11 Register Application............ccccvveeeeeninnns
4.1.12 Start/Stop Communication.....................
4.1.13 Channel INit........cccooceiriienicieneenen
4.1.14 Modify FirMWare ParameEtercoiiiuiiiiiiee ettt e e e st e e e e s et e e e e e e s s e satbeaeeaeseannnraeees
4.2 Acyclic events indicated by the STACK..........cocuiiiiiie e
4.2.1 Indication of a Reset Request from the NEIWOIK...........cuuiiiiiiiiiiiiiiieec e
4.2.2 Connection State Change INAICALIONooiiiiiiiiie e e
4.2.3 Indication of acyclic Data TranSTerc.ooi e e

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Introduction 4/172

4.2.4 CIP Object Change INAICALIONuuiiiiieii et e e et e e e e e e e e nneaeeeas 120

4.2.5 Link Status Change............

4.2.6 Forward_Open Indication

4.2.7 Forward_Open_Completion INAICAtIONcc.uviiiiie e e e 132
4.2.8 Forward_ClOSe INQICALION.......cciiiiiiiiiiiiie e e e e e e s e st er e e e e e s snbtbaereaeeeasnnraeees 135
4.3 Additional services requested by the applicationccccvvvivieei i 140
4.3.1 Get Module Status/ NetWOIrK SEALUScooiiiiiiiiiiiaa e e e e e e e e e e e enneaeeeas 141
o T T VAV = ol T Lo To T T4 T PSPPSR 143
4.3.3 Get DPM /O INFOIMALIONeeiiiiee ittt e e e et e e e e e e e et e e e e e e e e anneneeeas 144
4.3.4 UNregister APPIICALIONueeiiiieei ettt e e ettt e e e e e et b e e e e e e e e e annebeeeeaeeeaannnaeeeas 144
4.3.5 Delete CONfIQUIALION.........cuiiiiiii e ettt e e e s e e e e e e e et e e e e e s eaaatb e et aaeeeasastbaereaeeeassnsreees 144
4.3.6 LOCK/UNIOCK CONFIQUIALION.eiiieiiiiiiiiiis i e ettt et e e s et e e e e e et e e e e e e e s snntbaeeeeeeeasnnereeeas 144
4.3.7 Get FIrMWArE ParamMELOreeiiiiiiie ittt ettt ettt ettt st e e et e e sbbe e e s nabeeeeanbreeenaes 144
4.3.8 Get Firmware [dentifiCatiON............uii ittt 144
5 StAtUS/EITOr COUES OVEIVIEW ..ocuiiiiieiiiiiii ettt ee ettt e sttt e e sttt e e st e e e e sttt e e e sbb e e e e snbaeeeesnbbeeeesnneeeas 145
5.1 Stack SPECIfiC ErTOr COUEScoiuieiiiiiieae ettt ettt e e e e ettt e e e e e e s e bbb e e e e e e e e e e nbabeeeaaaeeeaans 145
5.2 General EtherNet/IP Error COUESiiiiiiiiiiiiiii i aaasnsnansnnnnnsnnnnnnnnes 148
6 Y o 0 1= 2 o |G 150
6.1 Module and NEtWOIK STALUSuiiiiiiiiii e e aaaa s aaasaaaassnsnensnsnnnsnnnnnnnnns 150
L 00 R |V [To (U1 =] = LU O PRSP PPPRP 150
L A V[o] (] r= LU PP PPPR 151
6.2 Quality Of SEIVICE (QOS) ..eeiiiiiiiiiitiiiiie e ettt e ettt et e e e e s et e e e e e e e e e s e aabb b et e e e e e e e aannbbeeeaaaaaaaans 151
L0 R 1 i o T [0 o3 1o DU PSP PRRPPPR 151
L A B 11157 VPP TSRS PUPR 152
6.2.3 802.1D/Q PrOtOCOcciiiiitieiee e e ettt ettt e et e e e e e et b e e e e e e s et e e e e e e s e et a et e e e e e e annraees 153
I s - @ T S 3 @ o] = o SO RRT TR 154
6.2.4.1 Enable 802.1Q (VLAN taQ0iNG). ... uuueeeiaaiaaiiriieeeaesaaiieieeeaaesaaineieeeaaasasannereeeeaeeaaanneneeeas 154
L0 T I 155
LS A = {1 o IS0 o 1=T 4 o = RO UERP TR 155
6.3.2 Precedence Rule for Multi-Supervisor OPerationccooouiiiiiiiee e e e 156
6.3.3 Beacon and ANNOUNCE FTAMESuuiiiiaai ittt e ettt e e e e ettt e e e e e e s e tbeeeeeaeesaannneaeeaaaeeaannsnneeas 156
LSS A = 1 o N N o o = RO URPRPP 157
6.3.5 Normal NetWork OPEratiOncociuiiiiiie ettt e e e e e e e s e e e e e s e atb e e e e e e e e asnereees 159
6.3.6 RaPid FAUI/RESIOIE CYCIES....ccci ittt e e e e e e s s e e e e e s e s bt e e e e e e e e e sneaaees 159
6.3.7 StALES Of SUPEIVISOI ...ttt et e et e e e e e et e e e e e e s st b e e e e e e e s eatbtbeeeeeeseasnereees 159
6.4 QUICK CONNECT. .. . it b e e e b e e e aaaaa e s assaaassassasasssssassssssbsbassssssssbssssnsssnbnsnsnnnsnnes 162
L0t R 1 i o T [0 o3 1o o DO PP PP ROTPRT 162
L S Lo [T =101 | RO URRT PP 163
6.5 Hilscher SPECIfIC CIP SEIVICESuuuiiiiieeii ittt e e e s st e e e e s s s e e e e e e s s sanbe e e e aeesannnnnreeeeaeeeeanns 164
OIS0 R @7] 151 14 T o H PP P PP PP PPPPPPPPPPPPPRPPPINS 164
6.5.1.1 ReSet ODJECT (OXFF32)... .. ettt e e e et e e e e e e enneaeeeas 164
6.5.1.2 Get Attribute Option (OXFF33) e 164
6.5.1.3 Set Attribute Option (OXFF34) ...t e e 165
6.5.2 ASSEMDIY ODJECT ..oiiiiiiiiiiiii e e e e e e e e e e e e e s aa et e e e e e aarraeas 165
6.5.2.1 Create (OXO40L)uuuiiieeiiiiiiiiee e e e sttt e e e e et e e e e e e e e e e e e e e e e e e et ataa e e e e nnrraaees 165
6.5.2.2 DEIELE (OX0A02) ..eeeeiiieieiee ittt sttt siee et ste ettt et e b et e b et e e bt et eebe e nreeeaeeans 166
6.5.2.3 Add Member (OX0403)uuiiiiieeiiiiiiiee e e e s eeitr et e e e s e e e e e e s e st er e e e e e e ar e e e e e e anraaees 166
6.5.2.4 Delete MemMDBDEr (OX0404)oei ittt e e e ettt e e e e e e enne e e e e e e e e annraeeeas 167
LG I 13 A) o U] =SOSR 168
L A I 1= o) B 1=] (= O OPPPO 169
O S T O] o] r= Tox £ PO PP PP P PP PPPPPPPPPPP 172

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Introduction 5/172

1 Introduction
1.1 Abstract

This manual describes the user interface of the EtherNet/IP Adapter implementation on the netX
chip. The aim of this manual is to support the integration of devices based on the netX chip into
own applications based on driver functions or direct access to the dual-port memory.

The general mechanism of data transfer, for example how to send and receive a message or how
to perform a warmstart is independent from the protocol. These procedures are common to all
devices and are described in the ‘netX DPM Interface manual’.

1.2 List of Revisions

Rev Date Name Revisions
1 2015-04-07 |RH, RG Created
2 2015-04-30 | KM Section Time Sync Object (Class Code: 0x43) added

Description of packet EIP_OBJECT_MR_REGISTER_REQ adapted
Figure “Non-Volatile CIP Object Attributes” adapted

3 2015-01-12 | KM Section Ethernet Link Object (Class Code: 0xF6): Set object revision to 4, Set
default value of class attribute 7 to 11, Added new instance attribute 11, class-
specific service “Get and Clear” added.

Section Time Sync Object (Class Code: 0x43): Common Services “Get Attributes
List” and “Set Attributes List” added.

Section Set Parameter added.

Section Forward_Open Indication added.
Section Forward_Open_Completion Indication added.
Section Forward_Close Indication added.

Table 1: List of Revisions

1.3 System Requirements

This software package has following system requirements to its environment:
netX-Chip as CPU hardware platform

operating system rcX

1.4 Intended Audience

This manual is suitable for software developers with the following background:
Knowledge of the netX DPM Interface manual
Knowledge of the Common Industrial Protocol (CIP™) Specification Volume 1

Knowledge of the Common Industrial Protocol (CIP™) Specification Volume 2

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Introduction

6/172

1.5 Specifications

The data below applies to the EtherNet/IP Adapter firmware and stack version V3.3.0.

This firmware/stack has been written to meet the requirements of a subset outlined in the CIP Vol.

1 and CIP Vol. 2 specifications.

151 Technical Data

Maximum number of input data
Maximum number of output data

IO Connection Types (implicit)

IO Connection Trigger Types

Explicit messages connections

Implicit message connections
Unconnected Message Manager (UCMM)
Max. number of user specific objects
Max. number of assembly instances

Predefined standard objects

DHCP

BOOTP

Baud rates

Duplex modes

MDI modes

Data transport layer
ACD

Integrated switch

Reset services

504 bytes per assembly instance
504 bytes per assembly instance

Exclusive Owner,
Listen Only,
Input only

Cyclic, minimum 1 ms*
Application Triggered, minimum 1 ms*
Change Of State, minimum 1 ms*

10

5

10

20

10

Identity Object (Ox01)
Message Router Object (0x02)
Assembly Object (0Ox04)
Connection Manager (Ox06)
Time Sync Object (0x43)
DLR Object (0x47)
QoS Object (0x48)
TCP/IP Interface Object (OxF5)
Ethernet Link Object (OxF6)
supported

supported

10 and 100 MBit/s

Half Duplex, Full Duplex, Auto-Negotiation
MDI, MDI-X, Auto-MDIX

Ethernet Il, IEEE 802.3

supported

supported

Identity Object Reset Service of Type 0 and 1

* depending on number of connections and number of input and output data

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

Introduction 71172

Firmware/stack available for netX

netX 50 no
netX 51 no
netx 52 yes
netX 100, netX 500 no

Configuration

Configuration by tool SYCON.net (Download or exported configuration of two files named
config.nxd and nwid.nxd)

Configuration by packets
Diagnostic
Firmware supports common diagnostic in the dual-port-memory for loadable firmware
152 Limitations

TAGs are not supported

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Introduction

8/172

1.6 Terms, Abbreviations and Definitions

Term Description

ACD Address Conflict Detection

AP Application on top of the Stack

API Actual Packet Interval or Application Programmer Interface
AS Assembly Object

BOOTP Boot Protocol

CIP Common Industrial Protocol

CM Connection Manager

DHCP Dynamic Host Configuration Protocol
DiffServ Differentiated Services

DLR Device Level Ring (i.e. ring topology on device level)
DPM Dual Port Memory

EIM Ethernet/IP Scanner (=Master)

EIP Ethernet/IP

EIS Ethernet/IP Adapter (=Slave)

ENCAP Encapsulation Layer

ERC Extended Error Code

GRC Generic Error Code

IANA Internet Assigned Numbers Authority
ID Identity Object

IP Internet Protocol

LSB Least Significant Byte

MR Message Router Object

MSB Most Significant Byte

ODVA Open DeviceNet Vendors Association
oSl Open Systems Interconnection (according to 1ISO 7498)
QoS Quality of Service

RPI Requested Packet Interval

TCP Transmission Control Protocol
UCMM Unconnected Message Manager
VLAN Virtual Local Area Network

Table 2: Terms, Abbreviations and Definitions

All variables, parameters, and data used in this manual have the LSB/MSB (“Intel”) data

representation. This corresponds to the convention of the Microsoft C Compiler.

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

Introduction 9/172

1.7

References

This document is based on the following specifications:

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Hilscher Gesellschaft flr Systemautomation mbH: Dual-Port Memory Interface Manual,
netX based products. Revision 12, English, 2012

Hilscher Gesellschaft fir Systemautomation mbH: TCP/IP Protocol Interface Manual,
Revision 11, English, 2010

ODVA: The CIP Networks Library, Volume 1, “Common Industrial Protocol (CIP™)”, Edition
3.18, April 2015

ODVA: The CIP Networks Library, Volume 2, “EtherNet/IP Adaptation of CIP”, Edition 1.19,
April 2015

Hilscher Gesellschaft fur Systemautomation mbH: Application Note: Functions of the
Integrated WebServer, Revision 4, English, 2012

The Common Industrial Protocol (CIP™) and the Family of CIP Networks, Publication
Number: PUB00123R0, downloadable from ODVA website (http://www.odva.org/)

Hilscher Gesellschaft fir Systemautomation mbH: Application Note: CIP Sync, Revision 5,
English, 2015 (Document ID: DOC130104AN05EN)

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

http://www.odva.org/

Introduction 10/172

1.8 Legal Notes
1.8.1 Copyright

©2015-2016 Hilscher Gesellschaft fiir Systemautomation mbH
All rights reserved.

The images, photographs and texts in the accompanying material (user manual, accompanying
texts, documentation, etc.) are protected by German and international copyright law as well as
international trade and protection provisions. You are not authorized to duplicate these in whole or
in part using technical or mechanical methods (printing, photocopying or other methods), to
manipulate or transfer using electronic systems without prior written consent. You are not permitted
to make changes to copyright notices, markings, trademarks or ownership declarations. The
included diagrams do not take the patent situation into account. The company names and product
descriptions included in this document may be trademarks or brands of the respective owners and
may be trademarked or patented. Any form of further use requires the explicit consent of the
respective rights owner.

1.8.2 Important Notes

The user manual, accompanying texts and the documentation were created for the use of the
products by qualified experts, however, errors cannot be ruled out. For this reason, no guarantee
can be made and neither juristic responsibility for erroneous information nor any liability can be
assumed. Descriptions, accompanying texts and documentation included in the user manual do
not present a guarantee nor any information about proper use as stipulated in the contract or a
warranted feature. It cannot be ruled out that the user manual, the accompanying texts and the
documentation do not correspond exactly to the described features, standards or other data of the
delivered product. No warranty or guarantee regarding the correctness or accuracy of the
information is assumed.

We reserve the right to change our products and their specification as well as related user
manuals, accompanying texts and documentation at all times and without advance notice, without
obligation to report the change. Changes will be included in future manuals and do not constitute
any obligations. There is no entitlement to revisions of delivered documents. The manual delivered
with the product applies.

Hilscher Gesellschaft fir Systemautomation mbH is not liable under any circumstances for direct,
indirect, incidental or follow-on damage or loss of earnings resulting from the use of the information
contained in this publication.

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Introduction 11/172

1.8.3 Exclusion of Liability

The software was produced and tested with utmost care by Hilscher Gesellschaft fir
Systemautomation mbH and is made available as is. No warranty can be assumed for the
performance and flawlessness of the software for all usage conditions and cases and for the
results produced when utilized by the user. Liability for any damages that may result from the use
of the hardware or software or related documents, is limited to cases of intent or grossly negligent
violation of significant contractual obligations. Indemnity claims for the violation of significant
contractual obligations are limited to damages that are foreseeable and typical for this type of
contract.

It is strictly prohibited to use the software in the following areas:
for military purposes or in weapon systems;
for the design, construction, maintenance or operation of nuclear facilities;
in air traffic control systems, air traffic or air traffic communication systems;
in life support systems;

in systems in which failures in the software could lead to personal injury or injuries leading to
death.

We inform you that the software was not developed for use in dangerous environments requiring
fail-proof control mechanisms. Use of the software in such an environment occurs at your own risk.
No liability is assumed for damages or losses due to unauthorized use.

1.84 Export

The delivered product (including the technical data) is subject to export or import laws as well as
the associated regulations of different counters, in particular those of Germany and the USA. The
software may not be exported to countries where this is prohibited by the United States Export
Administration Act and its additional provisions. You are obligated to comply with the regulations at
your personal responsibility. We wish to inform you that you may require permission from state
authorities to export, re-export or import the product.

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Available CIP Classes in the Hilscher EtherNet/IP Stack 12/172

2 Available CIP Classes in the Hilscher EtherNet/IP
Stack

The following subsections describe all default CIP object classes that are available within the
Hilscher EtherNet/IP stack.

Figure 1 gives an overview about the available CIP objects and their instances assuming a default
configuration (assembly instances 100 and 101).

DLR o
QoS . -
Instance 0 ! |dentity
Instance 0 Instance 1 | ! f
Instance 1 ' — - \ Instance 0
=) i - Instance 1
Connection —" / . L
Manager /
Instance 0 / e —~ T
Instance 1 T - . Message : . |It§§2§e
— - T Router \ .
Instance 0 — E— Instance 0
Instance 1
> ASS&I’T‘IDW - P Instance 1)
y Inst 0 . —) P - —
[e | Ethernet Link
\ Instance 100 |
Instance 101 T - Instance 0
- —— I_ Instance 1
| \ EXp”Cit _ . Instance 2*
{ . o | \ | -
-. | Msg /) —— — .
\ *if 2 ethernet ports are available)
__Connections(s)
CIP Network

Figure 1: Default Hilscher Device Object Model

2.1 Introduction

Every CIP class is described using four tables. The first table describes the class attributes, the
second one describes the instance attributes, and the last two ones give an overview of service the
object supports.

A Class Attribute is an attribute whose scope is that of the class as a whole, rather than any one
particular instance. Therefore, the list of Class Attributes is different than the list of Instance
Attributes. CIP defines the Instance ID value zero (0) to designate the Class level versus a specific
Instance within the Class.

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Available CIP Classes in the Hilscher EtherNet/IP Stack 13/172

2.1.1 Class Attributes

Class Attributes are defined using the following terms:

Class Attributes (Instance 0)

Access

Attr N 5 it Default | Supported
ame escription

ID from from P value | by default

Network | Host

1 2 3 4 5 6 7
Table 3: Introduction of Class Attribute Description

1. The Attribute ID is an integer identification value assigned to an attribute. Use the Attribute
ID in the Get_Attributes and Set_Attributes services list. The Attribute ID identifies the
particular attribute being accessed.

2. Name refers to the attribute.

3. The Access From Network specifies how a requestor can access an attribute from the
EtherNet/IP network. The definitions are:

Set (Settable) - The attribute can be accessed by at least one of the set services
(Set_Attribute_Single/ Set_Attribute_All).

Get (Gettable) - The attribute can be accessed by at least one of the get services
(Get_Attribute_Single/ Get_Attribute_All).

The Access Rule Host specifies how the Host Application (running on the netX or on a host
processor) can access an attribute using the packet APl of the stack (see description of
packet “CIP Service Request” in section 4.1.9).

The definitions for access rules are:

Set (Settable) - The attribute can be accessed by at least one of the set services
(Set_Attribute_Single/ Set_Attribute_All).

Get (Gettable) - The attribute can be accessed by at least one of the get services
(Get_Attribute_Single/ Get_Attribute_All).

4. Description of Attribute provides general information about the attribute.
5. Default value provides information about the default value of the attribute.
6. Supported by default indicates whether this attribute is supported by the stack per default.

Some object attributes are implemented within the stack, but are not accessible from the
EtherNet/IP network per default. An additional service needs to be performed in order to
“activate” this attribute (Hilscher specific service “Set Attribute Option” — see 6.5.1.3).
Activating those attributes is always optional.

@ > The attribute is supported and accessible per default.
*. =» The attribute is NOT supported per default, but it can be activated.

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Available CIP Classes in the Hilscher EtherNet/IP Stack 14/172

2.1.2

Instance Attributes

An Instance Attribute is an attribute that is unique to an object instance and not shared by the
object class. Instance Attributes are defined in the same terms as Class Attributes.

Instance Attributes (Instance 1-n)

Access
Attr N S Default | Supported
ipti
ID from from P value | by default
Network | Host

1 2 3 4 5 6 7
Table 4: Introduction of Instance Attribute Description
2.1.3 Services

Services can either address the class level (instance ID 0) or the instance level (instance ID 1-n) of
a CIP object. Additionally, service can be sent by a device that is located inside the EtherNet/IP
network or it can be sent by the host application of the stack.

Therefore, the services an object supports are described with two tables. The first table shows the
common services that can be sent by both a device within the EtherNet/IP network or the host
application of the stack. The second table shows the Hilscher specific services that can only be
sent by the host application.

Both tables have the same format:

Service Name Addressing the object’s | Description
Sec Class Instance
Level Level
1 2 3 4 5
Table 5: Introduction of Service Description
1. The Service Code is a hexadecimal value assigned to a specific CIP service. The service
can either be defined within the EtherNet/IP specification or is a Hilscher specific service
code (Hilscher specific services are described separately in chapter 6.5.1 “Hilscher specific
CIP services”).
2. The Name refers to the service.
3. Addressing the object’s class level
@ > The stack supports this service if it addresses the class level (instance 0).
B3 5 The stack does not support this service for the class level.
4. Addressing the object’s instance level
@ > The stack supports this service if it addresses the instance level (instance 1-n).
B3 5 The stack does not support this service for the instance level.
5. The Description provides general information about the service.

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Available CIP Classes in the Hilscher EtherNet/IP Stack 15/172

2.2 ldentity Object (Class Code: 0x01)

The Identity Object provides identification and general information about the device. The first and
only instance identifies the whole device. It is used for electronic keying and by applications
wishing to determine what devices are on the network.

2.2.1 Class Attributes
Access
Attr N 5 it Default | Supported
ame escription
ID from from P value | by default
Network | Host
1 Revision Get Set Revision of this object Q) o
Maximum instance number of an object
2 Max. Instance | Get Set currently created in this class level of the Q) o
device
3 Number of Get Set The nun"-nber.of Instances currently (l) ;
Instances created in this class
Maximum ID The attribute ID number of the last class
6 Number Class | Get Set attribute of the class definition)] 0
Attributes implemented in the device.
Maximum 1D
Number The attribute ID number of the last
7 Get Set instance attribute of the class definition (20) 0
Instance . . .
implemented in the device.
Attributes
Table 6: Identity Object - Class Attributes
2.2.2 Instance Attributes
Access
Attr s 5 inti Default | Supported
ame escription
ID from from > Value by default
Network | Host
o (0x011B)
1 Vendor ID Get Set Vendor Identification) 0
Hilscher
2 Device Type Get Set Indication of general type of product Q) 0
3 Product Code Get Set .Idelntllflcatlon of a particular product of an (1) o
individual vendor
4
Revision Get Set Revision of the product (1.2) o
5 Status Get Set Summary status of device 0
6 Serial Number | Get Set Serial number of device 1 o
Human readable
7 Product Name | Get Set) o “netX” o
identification
8 State Get Get Present state of the device o
9 Conf. Consist Get Set Configuration Consistency Value 0 o
Value
10 Heart Beat Get Set The nomlngl interval between heartbeat 0 0
Interval messages in seconds.

Table 7: Identity Object - Instance Attributes

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

Available CIP Classes in the Hilscher EtherNet/IP Stack

16/172

2.2.3 Supported Services
2231 Common services coming from the EtherNet/IP network or host
application
Service Name Addressing the object’s Description
Code Class Instance
Level Level
0x01 Get Attribute All 0 0 Returns content of instance or class
attributes
0x05 Reset 0 0 Reset the device
Ox0E Get Attribute Single o o Returns value of attribute
0x10 Set Attribute Single o o Modifies value of attribute

Table 8: Identity Object - Common Services

2.2.3.2 Hilscher specific services coming from the host application
Service Name Addressing the object’s Description
coee Class Instance
Level Level
OxFF32 Reset Object 0 0 Reset object to default values
OxFF33 Get Attribute Option 0 0 Returns options of an attribute
OxFF34 Set Attribute Option o a Modifies options of an attribute

Table 9: Identity Object - Hilscher Specific Services

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

Available CIP Classes in the Hilscher EtherNet/IP Stack

17/172

2.3 Message Router Object (Class Code: 0x02)

The Message Router Object provides a messaging connection point through which a client may
address a service to any object class or instance residing in the physical device.

2.3.1 Class Attributes

Access
Attr s 5 inti Default Supported
ame escription
ID from from > Value by default
Network | Host
1 Revision Get Set Revision of this object Q) 0
Maximum instance number of an object
2 Max. Instance | Get Set currently created in this class level of the (1) 0
device
3 Number of Get Set The number of Instances currently (1) o
Instances created in this class
Maximum ID The attribute ID number of the last class
6 Number Class | Get Set attribute of the class definition) 0
Attributes implemented in the device.
Maximum 1D
The attribute ID number of the last
Number . i -
7 Get Set instance attribute of the class definition 0) o
Instance . . .
implemented in the device.
Attributes

Table 10: Message Router Object - Class Attributes

2.3.2 Instance Attributes

The Message Router object does not have instance attributes.

2.3.3 Supported Services

2.33.1 Common services coming from the EtherNet/IP network or host
application
Service Name Addressing the object’s Description
Code Class Instance
Level Level
Ox0E Get Attribute Single 0 0 Returns value of attribute

Table 11: Message Router Object - Common Services

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

Available CIP Classes in the Hilscher EtherNet/IP Stack

18/172

2.3.3.2 Hilscher specific services coming from the host application
Service Name Addressing the object’s Description
Code Class Instance
Level Level
OxFF33 Get Attribute Option o o Returns options of an attribute
OxFF34 Set Attribute Option 0 0 Modifies options of an attribute

Table 12: Message Router Object - Hilscher Specific Services

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

Available CIP Classes in the Hilscher EtherNet/IP Stack 19/172

2.4 Assembly Object (Class Code: 0x04)

The Assembly Object binds attributes of multiple objects, which allows data to or from each object
to be sent or received over a single connection. Assembly Objects can be used to bind produced
data or consumed data.

24.1 Class Attributes
Access
Attr N 5 it Default | Supported
ame escription
ID from from P value | by default
Network | Host
1 Revision Get Set Revision of this object) o
Maximum instance number of an object
2 Max. Instance | Get Set currently created in this class level of the (OXFFFF) o
device
3 Number of Get Set The nun?ber.of Instances currently ©) 0
Instances created in this class
Maximum ID The attribute ID number of the last class
6 Number Class | Get Set attribute of the class definition)] 0
Attributes implemented in the device.
Maximum 1D
Number The attribute ID number of the last
7 Get Set instance attribute of the class definition) 0
Instance . . .
implemented in the device.
Attributes
Table 13: Assembly Object - Class Attributes
2.4.2 Instance Attributes
Access
Attr N S Default | Supported
ipti
ID from from P value | by default
Network | Host
Number of e
1 Member None Set Vendor Identification 0
2 Member None None Member list o
Data Get Set o
4 . . .
Size Get Set Number of bytes in Attribute 3 o
300 "I\/;?mber data None None Data of assembly members o
301 | Parameter None Get Assembly parameter 0
302 | Status None Get Status of the assembly 0

Table 14: Assembly Object - Instance Attributes

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

Available CIP Classes in the Hilscher EtherNet/IP Stack 20/172
2.4.3 Supported Services

2431 Common services coming from the EtherNet/IP network or host
application
Service Name Addressing the object’s Description
Code Class Instance
Level Level
Ox0E Get Attribute Single 0 0 Returns value of attribute
0x10 Set Attribute Single m 0 Modifies value of attribute

Table 15: Assembly Object - Common Services

2432 Hilscher specific services coming from the host application
Service Name Addressing the object’s Description
coee Class Instance

Level Level

OxFF33 Get Attribute Option o o Returns options of an attribute
OxFF34 Set Attribute Option 0 0 Modifies options of an attribute
0x401 Assembly Create 0 u Creates an new assembly instance
0x402 Assembly Delete m o Deletes an assembly instance
0x403 Add Member m o Add an member to assembly
0x404 Del Member m 0 Remove member from Assembly
OxFF32 Reset Object 0 0 Reset object to default values
OxFF33 Get Attribute Option o o Returns options of an attribute
OxFF34 Set Attribute Option o o Modifies options of an attribute

Table 16: Assembly Object - Hilscher Specific Services

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Available CIP Classes in the Hilscher EtherNet/IP Stack 21/172

2.5 Connection Manager Object (Class Code: 0x06)

The Connection Manager Class allocates and manages the internal resources associated with
both I/ O and Explicit Messaging Connections.

2.5.1 Class Attributes
Access
Attr s 5 inti Default | Supported
ame escription
ID from from > Value by default
Network | Host
1 Revision Get Set Revision of this object Q) 0
Maximum instance number of an object
2 Max. Instance | Get Set currently created in this class level of the (1) 0
device
3 Number of Get Set The number of Instances currently (1) o
Instances created in this class
Maximum ID The attribute ID number of the last class
6 Number Class | Get Set attribute of the class definition) 0
Attributes implemented in the device.
Maximum 1D
Number The attribute ID number of the last
7 Get Set instance attribute of the class definition 0) o
Instance . . .
implemented in the device.
Attributes

Table 17: Connection Manager Object - Class Attributes

2.5.2 Instance Attributes
Access
Attr \ 5 it Default | Supported
ame escription
ID (i (i > Value by default
Network | Host
1 Open Get Set Number of Fo.rward Open service ©) ;
Requests requests received.

Table 18: Connection Manager Object - Instance Attributes

2.5.3 Supported Services
2531 Common services coming from the EtherNet/IP network or host
application
Service Name Addressing the object’s Description
Code Class Instance
Level Level
Ox0E Get Attribute Single o a Returns value of attribute
0x10 Set Attribute Single ﬂ a Modifies value of attribute
0x54 Forward Open 0 u Open new connection
Ox4E Forward Close 0 u Close connection

Table 19: Connection Manager Object - Common Services

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Available CIP Classes in the Hilscher EtherNet/IP Stack

22/172

25.3.2 Hilscher specific services coming from the host application
Service Name Addressing the object’s Description
coee Class Instance
Level Level
OxFF32 Reset Object o o Reset object to default values
OxFF33 Get Attribute Option 0 0 Returns options of an attribute
OxFF34 Set Attribute Option 0 0 Modifies options of an attribute

Table 20: Connection Manager Object - Hilscher Specific Services

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

Available CIP Classes in the Hilscher EtherNet/IP Stack

23/172

2.6 Time Sync Object (Class Code: 0x43)

The Time Sync Object (used for CIP SYNC) provides a CIP interface to the IEEE 1588 (IEC
61588) Standard for a Precision Clock Synchronization Protocol for Networked Measurement and
Control Systems, commonly referred to as the Precision Time Protocol (PTP). When starting the
stack, this object is not available right away. It needs to be activated using the packet
EIP_ OBJECT MR REGISTER REQ (0x1A02).

For further information regarding CIP Sync and how it is used with the Hilscher EtherNet/IP stack
have a look at the corresponding Application Note [7].

2.6.1 Class Attributes
Access
Attr N S Default | Supported
ipti
ID from from P value | by default
Network | Host
1 Revision Get Set Revision of this object 3) 0
Maximum instance number of an object
2 Max. Instance | Get Set currently created in this class level of the 1) o
device
Number of The number of Instances currently
3 Instances Get Set created in this class (1) o
Maximum ID The attribute ID number of the last class
6 Number Class | Get Set attribute of the class definition ©) 3
Attributes implemented in the device.
Maximum ID
Number The attribute ID number of the last
7 Get Set instance attribute of the class definition (28) 1
Instance . . .
implemented in the device.
Attributes
Table 21: Time Sync Object - Class Attributes
2.6.2 Instance Attributes
Access
Attr N S Default Supported
ipti
ID from from P value | by default
Network | Host
0
1 PTPEnabl Set Set PTP Enabl .
nable e e nable (Disabled) 0
IsSynchronize . . .
2 q 4 2 Get Get Local clock is synchronized with master | 0 o
3 SystemTimeMi Get Get Cgrrent value of system_time in 0 o
croseconds microseconds
4 SystemTimeN Get Get Current value of system_time in 0 0
anoseconds nanoseconds
5 OffsetFromMa Get Get Offset between local clock and master 0 0
ster clock
6 MaxOffsetFro Set Set Maximum offset between local clock 0 o
mMaster and master clock
MeanPathDela
7 yToMaster Get Get Mean path delay to master 0 o

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

Available CIP Classes in the Hilscher EtherNet/IP Stack

24/172

Access
Attr N S Default Supported
ipti
ID from from P value | by default
Network | Host

8 GrandMasterC Get Get Grandmaster Clock Info allo 0
lockinfo

9 EarentCIocklnf Get Get Parent Clock Info alo o

10 LocalClockino | Get Get Local Clock Info alo o

11 ls\lumberOfPort Get Get Number of ports 1 0

12 PortStatelnfo Get Get Port state info disabled 0

13 PortEnableCfg | Set Set Port enable cfg enabled o
PortLogAnnou .

14 ncelntervalCfg Set Set Port log announce interval cfg 0 o
PortLogSyncin .

15 tervalCig Set Set Port log sync interval cfg 0 0

16 Priorityl Priority 1 m

17 Priority2 Priority 2 m

18 eDromalnNumb Set Set Domain number 0 o

19 ClockType Get Get Clock type 0 0

20 Ma.nufactureld Get Get Manufacture identity allo 0
entity

21 Pr.oductDescrl Get Get Product description o
ption

22 RevisionData Get Get Revision data o

23 :serDescrlptlo Get Get User description 0
PortProfilelden L - 00-21-6C-

24 titylnfo Get Get Port profile identity info 00-01-00 0
PortPhysicalA . .

25 ddressinfo Get Get Port physical address info allo o
PortProtocolA .

26 ddressinfo Get Get Port protocol address info alo o

27 itepsRemove Get Get Steps removed 0 0
SystemTimeA .

28 ndOffset Get Get System time and offset allo 0
SyncParamete .

300 s Set Synchronization Parameters o

Tal9ble 22: Time Sync Object - Instance Attributes

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

Available CIP Classes in the Hilscher EtherNet/IP Stack

25/172

2.6.3 Supported Services
2.6.3.1 Common services coming from the EtherNet/IP network or host
application
Service Name Addressing the object’s Description
Code Class Instance
Level Level
The Get_Attribute_List service returns the
contents of the selected
0x03 Get Attributes List m o] N]
attributes of the specified object class or
instance
The Set_Attribute_List service sets the
0x04 Set Attributes List n o contents of selected attributes of the
specified object class or instance
(0)°(0] = Get Attribute Single o a Returns value of attribute
0x10 Set Attribute Single u 0 Modifies value of attribute

Table 23: Time Sync Object - Common Services

2.6.3.2 Hilscher specific services coming from the host application
Service Name Addressing the object’s Description
coee Class Instance
Level Level
OxFF32 Reset Object o a Reset object to default values
OxFF33 Get Attribute Option 0 0 Returns options of an attribute
OxFF34 Set Attribute Option 0 0 Modifies options of an attribute

Table 24: Time Sync Object - Hilscher Specific Services

2.6.4

2641

Instance Attributes

Attribute 300 - Sync Parameters

Attribute 300 of the Time Sync object is used to set some required synchronization-related
parameters. These are used to adjust the interval and offset times for the hardware

synchronization signals Sync 0 and Sync 1.

Basically, the Sync 0 signal is the interrupt that the host application will receive in order to retrieve
the current system time. On each event the EtherNet/IP stack writes the current system time into
the extended data area of the Dual Port Memory interface (for further information see CIP Sync
Application Note [7]).

0 Note: Currently, only Sync O can be used.

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

Available CIP Classes in the Hilscher EtherNet/IP Stack 26/172

Time Sync Object- Attribute 300

Variable Type Value/Range Description

ulSyncOlInterval UINT32 0, 10000 ... SyncO0 Interval
1000000000 This parameter specifies the interval of the Sync 0
Default: signal in nanoseconds.
1000000000 The value 0 means the signal is deactivated.

The starting point of the SyncO signal is dependent on
the Sync0 Offset (see parameter ulSync0Offset).

ulSyncO0ffset UINT32 smaller than Sync 0 Offset
ulSyncOlnterv i .
al This parameter specifies a nanosecond offset for the
Sync 0 signal relative to the system time (Time of the
Default: Sync Master).
0
ulSynclinterval UINT32 0, 10000 ... Syncl Interval
1000000000 This parameter specifies the interval of the Sync 1
Default: signal in nanoseconds.
1000000000 The value 0 means the signal is deactivated.

The starting point of the Syncl signal is dependent on
the Syncl Offset (see parameter ulSync1Offset).

ulSynclOffset UINT32 smaller than Sync 1 Offset
ulSynclinterv) .
al This parameter specifies a nanosecond offset for the
Sync 1 signal relative to the system time (Time of the
Default: Sync Master).
150

Table 25: Time Sync Object — Attribute 300

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Available CIP Classes in the Hilscher EtherNet/IP Stack

27/172

2.7

Device Level Ring Object (Class Code: 0x47)

The Device Level Ring (DLR) Object provides the configuration of the DLR protocol. DLR is used

for Ethernet Ring topology.
2.7.1

Class Attributes

Access
Attr Name Description Default Value Supported
ID e e g by default
Network | Host
1 Revision Get Set Revision of this object 3) 0
Maximum instance number of an
2 Max. Instance | Get Set object currently created in this (1) 0
class level of the device
Number of The number of Instances
3 . Get Set . tanc @ '
Instances currently created in this class
Maximum 1D I'I'he e}ttribute 'IE numfbﬁr ofI the
ast class attribute of the class
6 Get Set . . 7
Number Class definition implemented in the 0 o
Attributes device
Maximum 1D The attribute ID number of the
Number last instance attribute of the class
7 Get Set s) (12) (]
Instance definition implemented in the
Attributes device.

Table 26: DLR Object - Class Attributes

2.7.2 Instance Attributes
Access
Atlr Name Description Default Value Supported
ipti u u
ID from from P by default
Network | Host
1 Network Get Get Current network topolo 0 — Linear 0
Topology pology
Network
2 Get Get Current network status 0 — Normal o
Status
Active . .
10 Supervisor Get Get Active Supervisor Address 0) o
0x82 (Beacon
12 | capability . . based Ring Node,
Flags Get Get DLR capability of the device Flush Table frame 0
support)

Table 27: DLR Object - Instance Attributes

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

Available CIP Classes in the Hilscher EtherNet/IP Stack 28/172
2.7.3 Supported Services

2.7.3.1 Common services coming from the EtherNet/IP network or host
application
Addressing the object’s
Service \ 5 it
ame escription
Code Class Instance p
Level Level

0x01 Get Attribute All m 0 Returns content of instance or class attributes
Ox0E Get Attribute Single 0 0 Returns value of attribute

Table 28: DLR Object - Common Services

2.7.3.2 Hilscher specific services coming from the host application
Addressing the object’s
Service Name Description
Code Class Instance p
Level Level

OxFF32 Reset Object o o Reset object to default values
OxFF33 Get Attribute Option 0 0 Returns options of an attribute
OxFF34 Set Attribute Option 0 0 Modifies options of an attribute

Table 29: DLR Object - Hilscher Specific Service

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Available CIP Classes in the Hilscher EtherNet/IP Stack 29/172

2.8 Quality of Service Object (Class Code: 0x48)

The Quality of Service (QoS) Object provides the configuration of frame priorities. Ethernet frame
priorities are set at the Differentiate Service Code Points (DSCP) or at the 802.1Q Tag.

2.8.1

Class Attributes

Access
Attr Name Description Default Value Supported
ID e e g by default
Network | Host
1 Revision Get Set Revision of this object 3) 0
Maximum instance number of an
2 Max. Instance | Get Set object currently created in this (1) 0
class level of the device
Number of The number of Instances
3 . Get Set . tanc @ '
Instances currently created in this class
Maximum 1D I'I'he e}ttribute 'IE numfbﬁr ofI the
ast class attribute of the class
6 Get Set . . 7
Number Class definition implemented in the 0 o
Attributes device
Maximum 1D The attribute ID number of the
Number last instance attribute of the class
7 Get Set s) (12) (]
Instance definition implemented in the
Attributes device.

Table 30: QoS Object - Class Attributes

2.8.2 Instance Attributes
Access
Attr Name Description Default Value Supported
ID e e g by default
Network | Host
1 802.1Q Tag Get Get Current network topology 0 - disabled o
Enable
5 DSCP PTP Set Set DSCP value for PTP Event (59) 0
Event frames
3 DSCP PTP Set Set DSCP value for PTP general @7) 0
General frames
DSCP Urgent | Set Set DSCP value for implicit (55) (]
messages with urgent priority
DSCP DSCP value for implicit
5 Scheduled Set Set messages with scheduled priority (47) 0
. DSCP value for implicit
6 DSCP High Set Set messages with high priority (43) 0
7 DSCP Low Set Set DSCP value.for |mpl|g|t . (31) o
messages with low priority
8 | DSCP Explicit | Set Set DSCP value for explicit 27) o
messages

Table 31: QoS Object - Instance Attributes

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

Available CIP Classes in the Hilscher EtherNet/IP Stack 30/172
2.8.3 Supported Services
2.8.3.1 Common services coming from the EtherNet/IP network or host
application
Addressing the object’s
Service o
Code Name Class Instance Desc”ptlon
Level Level
Ox0E Get Attribute Single 0 0 Returns value of attribute
0x10 Set Attribute Single m 0 Modifies value of attribute

Table 32: Quality of Service Object - Common Services

2.8.3.2 Hilscher specific services coming from the host application
Addressing the object’s
Service Name Description
Code Class Instance p
Level Level
OxFF33 Get Attribute Option o o Returns options of an attribute
OxFF34 Set Attribute Option 0 0 Modifies options of an attribute

Table 33: Quality of Service Object - Hilscher Specific Service

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

Available CIP Classes in the Hilscher EtherNet/IP Stack

31/172

2.9 TCP/IP Interface Object (Class Code: 0xF5)

The TCP/IP Interface Object provides the mechanism to configure a device’s TCP/IP network
interface. Examples of configurable items include the device’'s IP Address, Network Mask, and
Gateway Address.

The EtherNet/IP Adapter stack supports exactly one instance of the TCP/IP Interface Object.

2.9.1 Class Attributes
Access
Attr Name Description Default Value Supported
ipti u u
ID from from P by default
Network | Host
1 Revision Get Set Revision of this object 4) 0
Maximum instance number of an
2 Max. Instance | Get Set object currently created in this 1) o
class level of the device
3 Number of Get Set The number of Ingtanges) i
Instances currently created in this class
Maximum 1D |'I'he alttribute -IE number ofI the
ast class attribute of the class
6 Get Set . . 7 3
Number Class definition implemented in the 0
Attributes device.
Maximum 1D The attribute ID number of the
7 Number Get Set Iast. ir.1.stan.ce attribute of the class (13) ;
Instance definition implemented in the
Attributes device.

Table 34: TCP/IP Interface Object - Class Attributes

2.9.2 Instance Attributes
Access
Attr \ 5 it - Supported
ame escription efault Value
ID (i (i . by default
Network Host
1 Status Get Set Interface status 0
Configuration .
2 - Get Set Interface capability flags (0x95) 0
Capability
Configuration
3 Set Set Interface control flags 0) o
Control
4 Physical Link
] Get Get Path to physical link object (0x20 OxF6 0x24 0
Object 0x01)
Interface Interface Configuration (IP
5]] Set Set address, subnet mask, gateway 0) 0
Configuration address etc.)
The Host Name attribute
contains the device’s host name,
6 Host Name Set Set which can be used for) 0
informational purposes.
See CIP Safety Specification,
7 | Safey Get Set ©) ;
Network Volume 5, Chapter 3

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

Available CIP Classes in the Hilscher EtherNet/IP Stack

32/172

Access
Atlr Name Description Default Value Supported
ipti u u
ID from from P by default
Network Host
Number
8 TTL Value Set Set TTL _value for EtherNet/IP (l) 0
multicast packets
) IP multicast address
9 Mcast Config Set Set]) 0) o
configuration
10 SelectAcd Set Set Activates the use of ACD 1) o
) Structure containing information
LastConflictD .
11 Set Set related to the last conflict 0) 0
etected
detected
EtherNet/IP Enable/Disable of Quick C
nable/Disable of Quick Connect
12 i N N 0
Quick one | None | EMable © (x
Connect
Encapsulation Number of seconds till TCP
13 Inactivity Set Set connection is closed on (120) o
Timeout encapsulation inactivity

Table 35: TCP/IP Interface Object - Instance Attributes

2.9.3 Supported Services
2931 Common services coming from the EtherNet/IP network or host
application
Service Name Addressing the object’s Description
Cee Class Instance
Level Level
0x01 Get Attribute All m 0 Returns content of instance or class
attributes
OxO0E Get Attribute Single o a Returns value of attribute
0x10 Set Attribute Single m o Modifies value of attribute

Table 36: TCP/IP Interface Object - Common Services

2.9.3.2 Hilscher specific services coming from the host application
Addressing the object’s
service Name Class Instance Description
Code
Level Level

0xF501 Get Multicast o u Get next multicast address
OxFF32 Reset Object o a Reset object to default values
OxFF33 Get Attribute Option 0 0 Returns options of an attribute
OxFF34 Set Attribute Option 0 0 Modifies options of an attribute

Table 37: TCP/IP Interface Object - Hilscher Specific Services

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

Available CIP Classes in the Hilscher EtherNet/IP Stack 33/172

2.10 Ethernet Link Object (Class Code: OxF6)

The Ethernet Link Object maintains link-specific status information for the Ethernet
communications interface. If the device is a multi-port device, it holds more than one instance of
this object. Usually, when using the 2-port switch, instance 1 is assigned to Ethernet port O and
instance 2 is assigned to Ethernet port 1.

2.10.1 Class Attributes

Access
Attr N S Default Supported
ipti
ID from from P value | by default
Network | Host
1 Revision Get Set Revision of this object 4) 0
Maximum instance number of an object
2 Max. Instance | Get Set currently created in this class level of the 2) o
device
Number of The number of Instances currently
3 Instances Get Set created in this class) o
Maximum ID The attribute ID number of the last class
6 Number Class | Get Set attribute of the class definition ©) 3
Attributes implemented in the device.
Maximum ID

Number The attribute ID number of the last

7 Get Set instance attribute of the class definition (12) 1
Instance . . .

implemented in the device.

Attributes

Table 38: Ethernet Link Object - Class Attributes

2.10.2 Instance Attributes

Access Support
Atlr Name Description Default edb
ipti
D from from p value y
Network Host default

Interf Interface speed currently

1 nieriace Get Get _ (100) (]
Speed in use
Interf

2 ntertace Get Get Interface status flags (0x20) 0
Flags

3 Physical Get Set MAC layer address 0
Address Y
Interface -

4 Counters Get Set Interface specific counters o
Media . o

5 Counters Get Set Media specific counters o
Interface ' . L

6 Control Set Set Configuration for physical interface 0) 0

7 Interface Type | Get Set Type of interface: twisted pair, fiber (0x02) 0
Interface .

8 Get Set Current state of interface 0) o
State

] Administrative state:
9 Admin State Set Set] (enable) 0
enable, disable

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Available CIP Classes in the Hilscher EtherNet/IP Stack 34/172
Access Support
Atlr Name Description Default ed b
ipti
D from from p value y
Network Host default
10 Interface Get Set Human readable identification (‘portd”,"po 0
Label rt2")
10/ HD,
Interface L - . 10/ FD,
11 Capability Get Set Indication of capabilities of the interface 100/ HD o
100/ FD
MDIX configuration
300 | MDIX Set Set (autompl) | @
MDI, MDIX, autoMDI
Table 39: Ethernet Link Object - Instance Attributes
2.10.3 Supported Services
2.10.3.1 Common services coming from the EtherNet/IP network or host
application
Service Name Addressing the object’s Description
Cee Class Instance
Level Level
0x01 Get Attribute All m o Returns content of instance or class
attributes
Ox0E Get Attribute Single o o Returns value of attribute
0x10 Set Attribute Single m 0 Modifies value of attribute

Table 40: Ethernet Link Object - Common Services

2.10.3.2 Class-Specific services coming from the EtherNet/IP network or host
application
Service Name Addressing the object’s Description
Cee Class Instance
Level Level
Gets and then clears the specified attribute
OxaC Getand Clear m o (Interface Counters and Media Counters).

Table 41: Ethernet Link Object — Class-Specific Services

2.10.3.3

Hilscher specific services coming from the host application

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

Available CIP Classes in the Hilscher EtherNet/IP Stack

35/172

Service

Addressing the object’s

Name Description
Code Class Instance p
Level Level
OxFF33 Get Attribute Option 0 0 Returns options of an attribute
OxFF34 Set Attribute Option o o Modifies options of an attribute

Table 42: Ethernet Link Object - Hilscher Specific Services

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

Available CIP Classes in the Hilscher EtherNet/IP Stack

36/172

2.11 Predefined Connection Object (Class Code: 0x401)

The Predefined Connection Object maintains the possible implicit connections.

This is a Hilscher specific CIP object.

2.11.1 Class Attributes

Access
Attr s 5 inti Default | Supported
ame escription
ID from from > Value by default
Network Host
1 Revision Get Set Revision of this object Q) 0
Maximum instance number of an object
2 Max. Instance | Get Set currently created in this class level of the 0 o
device
Number of The number of Instances currently
3 Instances Get Set created in this class 0 o
Maximum ID The attribute ID number of the last class
6 Number Class | Get Set attribute of the class definition) 0
Attributes implemented in the device.
Maximum 1D
Number The attribute ID number of the last
7 Get Set instance attribute of the class definition 0 o
Instance . . .
implemented in the device.
Attributes
Table 43: Predefined Connection Object - Class Attributes
2.11.2 Instance Attributes
Access
Attr \ 5 it Default Supported
ame escription
ID (i (i > Value by default
Network Host
1 State Get Get State of the connection 0
2 Count Get Get Number of connections 0
3 Configuration | Get Get Connection configuration o
Table 44: Predefined Connection Object - Instance Attributes
2.11.3 Supported Services
21131 Common services coming from the EtherNet/IP network or host
application
Service Name Addressing the object’s Description
(St Class Instance
Level Level
0x08 Create 0 u Create new predefined connection instance
0x09 Delete u 0 Delete predefined connection instance
OxO0E Get Attribute Single o a Returns value of attribute

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Available CIP Classes in the Hilscher EtherNet/IP Stack 37/172
Service Name Addressing the object’s Description
(St Class Instance
Level Level
0x10 Set Attribute Single u 0 Modifies value of attribute

Table 45: Predefined Connection Object - Common Services

2.11.3.2 Hilscher specific services coming from the host application
Addressing the object’s
Service Name Description
Code Class Instance p
Level Level
OXEFOL x Open Connection o u Checks if connection is allowed and
reserves requested resources
OxFF02 x Close Connection 0 u Free resources needed for the connection
OxFF32 Reset Object 0 0 Reset object to default values
OxFF33 Get Attribute Option o o Returns options of an attribute
OxFF34 Set Attribute Option o a Modifies options of an attribute

Table 46: Predefined Connection Object - Hilscher Specific Services

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

Available CIP Classes in the Hilscher EtherNet/IP Stack 38/172

2.12 10 Mapping Object (Class Code: 0x402)

The 10 Mapping Object maintains the assignment of process data. It is used to map the I/O area of
dual port memory to specific assemblies.

This is a Hilscher specific CIP object.

2.12.1 Class Attributes

Access
Attr N 5 it Default | Supported
ame escription
ID from from P Vvalue | by default
Network Host
1 Revision Get Set Revision of this object Q) o
Maximum instance number of an object
2 Max. Instance | Get Set currently created in this class level of the 0 o
device
Number of The number of Instances currentl
3 Get Set 1oer y 0 (]
Instances created in this class
Maximum ID The attribute ID number of the last class
6 Number Class | Get Set attribute of the class definition)] 0
Attributes implemented in the device.
Maximum 1D
The attribute ID number of the last
Number . . I
7 Get Set instance attribute of the class definition 3) 0
Instance . . .
implemented in the device.
Attributes

Table 47: 10 Mapping Object - Class Attributes

2.12.2 Instance Attributes

Access
Attr s 5 inti Default Supported
ame escription
ID from from > Value by default
Network Host

1 Status Get Get Status of /O data o
2 Length Get Get Length of I/O data 0
3 Data Get Get 1/0 data 0

Table 48: 10 Mapping Object - Instance Attributes

2.12.3 Supported Services

2.12.3.1 Common services coming from the EtherNet/IP network or host
application
Service Name Addressing the object’s Description
Cee Class Instance
Level Level
Ox0E Get Attribute Single o o Returns value of attribute
0x10 Set Attribute Single B 0 Modifies value of attribute

Table 49: 10 Mapping Object - Common Services

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Available CIP Classes in the Hilscher EtherNet/IP Stack 39/172

2.12.3.2 Hilscher specific services coming from the host application
Addressing the object’s
service Name Class Instance Description
Code
Level Level

OxFFO1 Create Member m o Creates a new I/O Mapping entry
O0xFF02 Delete Member u 0 Deletes I/O Mapping entry
OxFF32 Reset Object 0 0 Reset object to default values
OxFF33 Get Attribute Option o a Returns options of an attribute
OxFF34 Set Attribute Option o o Modifies options of an attribute

Table 50: 10 Mapping Object - Hilscher Specific Services

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Getting Started/ Configuration 40/172

3 Getting Started/ Configuration

3.1 Configuration Procedures

The following ways are available to configure the EtherNet/IP Adapter:
Using the Configuration Tool SYCON.net
By netX configuration and diagnostic utility

By configuration packets
3.1.1 Using the Configuration Tool SYCON.net

The easiest way to configure the EtherNet/IP Adapter is using Hilscher’'s configuration tool
SYCON.net. This tool is described in a separate documentation.

3.1.2 Using the netX configuration and diagnostic utility

The configuration of the EtherNet/IP Adapter using Hilscher’'s netX configuration and diagnostic
utility, is described in a separate documentation.

3.1.3 Using the Packet API of the EtherNet/IP Protocol Stack

Depending of the interface the host application has to the EtherNet/IP stack, there are different
possibilities of how configuration can be performed.

For more information how to accomplish this, please see section 3.2

3.2 Configuration Using the Packet API

In section 2 “Available CIP Classes in the Hilscher EtherNet/IP Stack” the default Hilscher CIP
Object Model is displayed. This section explains how these objects can be configured using the
Packet API of the EtherNet/IP stack.

There are some configuration sets available to configure the device. The Configuration Set must
be chosen depending on the requirements for the device you want to develop and on the CIP
Object Model you want the device to have.

Table 51: Configuration Sets shows the available sets and describes the general functionalities
that come with the corresponding set.

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Getting Started/ Configuration

41/172

Scenario Name of
Configuration Set

Description

Loadable Basic
Firmware

This set provides a basic functionality

Cyclic communication/ implicit messaging (Transport class1 and Class0).
Two assembly instances are available, one for input and one for output
data.

Acyclic access (explicit messaging) to all predefined Hilscher CIP objects
(unconnected/connected).

Support of Device Level Ring (DLR) protocol.
Support of ACD (Address Conflict Detection)
Support of Quick Connect

Storage of changed Attributes

Using this configuration the device’s CIP object model will look like the one that
is illustrated in Figure 1.
Note:

If your application/device needs a special functionality that is not covered by the
basic Packet Set, please use the Extended Packet Set described below.

Extended

Using this Configuration Set, the host application is free to design the device’s
CIP object model in all aspects. In addition to the functionalities that come with
the Basic Configuration Set, this set provides the following:

Up to 32 assembly instances possible.

Additional configuration assembly possible (necessary if the device needs
configuration parameters from the Scanner/Master/PLC before going into
cyclic communication).

Use additional CIP objects (that might be necessary when using a special
CIP Profile). These objects are also accessible via acyclic/explicit
messages.

This Configuration Set can, of course, also be used if only a basic configuration
is desired.
Note:

All changes of any non volatile object attribute has to be handled from the host
application.

Table 51: Configuration Sets

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Getting Started/ Configuration 42/172

3.2.1 Basic Configuration Set

3.21.1 Configuration Packets

To configure the EtherNet/IP Stack’s default CIP objects the following packets are necessary:

No. of section | Packet Name Command Page
Code
(REQ/CNF)

41.1 Configure the Device with Configuration Parameter 0x3612/ 93
0x3613

RCX_REGISTER_APP_REQ - Register the Application at the stack in order | Ox2F10/
to receive indications Ox2F11

(see [1] “DPM Manual” for more information)

RCX_CHANNEL_INIT_REQ - Perform channel initialization Ox2F80/
0x2F81

(see [1] “DPM Manual” for more information)

Table 52: Basic Configuration Set - Configuration Packets

3.2.1.2 Optional Request Packets

In addition to the request packets related to configuration, there are some more request packets
the application can use. It is recommended to use Application controlled start at ulSystemFlags
of the EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ Wwhen optional packets are wused for
configuration

No. of Packet Name
section

41.2 Set Parameter Flags

431 Get Module Status/ Network Status

4.1.4 Register an additional Object Class at the Message Router

4.1.5 Register a new Assembly Instance

4.1.7 Register Service

4.1.8 Set Parameter

Table 53: Additional Request Packets Using the Basic Configuration Set

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Getting Started/ Configuration 43/172

3.2.1.3 Indication Packets the Host Application Needs to Handle

In addition to the request packets, there are some indication packets the application needs to
handle:

No. of section | Packet Name Command | Page
code
(IND/RES)

42.1 Indication of a Reset Request from the network Ox1A24/ 94
0x1A25

4.2.2 Connection State Change Indication Ox1A2E/ 98
Ox1A2F

4.2.3 Indication of acyclic Data Transfer Ox1A3E/ 107
Ox1A3F

424 CIP Object Change Indication Ox1AFA/ | 120
Ox1AFB

Table 54: Indication Packets Using the Basic Configuration Set

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Getting Started/ Configuration 44/172

3.214 Configuration Sequence
The packets of Packet Set “Basic” should be sent in the order that is illustrated in Figure 2.

Configuration Sequence Using the Basic Packet Set

:Register Application :

RCX_REGISTER_APP_REQ

|
i
i
; Ll
' Save link to application
|
i
| RCX_REGISTER_APP_CNF
[l
|

: Send Configuration :

EIP_APS_SET_CONFIGURATION_REQ |

| Ll

X Check and store configuration
! in volatile memaory

l

[

' EIP_APS_SET_CONFIGURATION_CNF

:Perform Channel Init (Applies Configuration) :

|
RCX_CHANNEL_INIT_REQ !

-
-

Perform reset

| RCX_CHANNEL_INIT_CNF

L
e e s S e e |

4
I
: Apply configuration o
X -
| .
alt [over additional configuration] |
| I
I
: Optional Configuration packets ¢an be send :
!
i i
' <optinal service>_REQ o :

Ll

<optinal service>_CNF

Fe------1

|
|
alt [1f start by application is used] :
I

:Set BusON (Application triggered start) :

|
RCX_START_STOP_COMM_REQ !

-
L

RCX_START_STOP_COMM_CNF

il
L}

Start communication

Figure 2: Configuration Sequence Using the Basic Configuration Set

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Getting Started/ Configuration 45/172

3.2.2 Extended Configuration Set

3.22.1 Configuration Packets
To configure the EtherNet/IP Stack, the following packets are necessary:
No. of section | Packet Name Command Page
Code
(REQ/CNF)
419 CIP Service Request Ox1AF8/ 82
Ox1AF9
4.1.5 Register a new Assembly Instance Ox1Ao0C/ 68
O0x1A0D
4.1.3 Finish configuration of CIP Objects 0x3614 / 63
0x3615
RCX_REGISTER_APP_REQ - Register the Application at the stack in order | Ox2F10/
to receive indications Ox2F11
(see [1] “DPM Manual” for more information)

Table 55: Extended Configuration Set - Configuration Packets

3.2.2.2 Optional Request Packets

In addition to the request packets related to configuration, there are some more request packets
the application can use:

No. of section | Packet Name Command | Page
code
(REQ/CNF)

41.2 Set Parameter Flags 0x360A/ 60
0x360B

4.3.1 Get Module Status/ Network Status 0x360E/ 141
Ox360F

41.4 Register an additional Object Class at the Message Router 0x1A02/ 65
0x1A03

4.1.6 Set the Device’s Identity Information Ox1Al16/ 74
Ox1A17

4.1.7 Register Service 0x1A44/ 79
0x1A45

Table 56: Additional Request Packets Using the Basic Configuration Set

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Getting Started/ Configuration 46/172

3.2.2.3 Indication Packets the Host Application Needs to Handle

In addition to the request packets, there are some indication packets the application needs to
handle:

No. of section | Packet Name Command | Page
code
(IND/RES)

42.1 Indication of a Reset Request from the network Ox1A24/ 94
0x1A25

4.2.2 Connection State Change Indication Ox1A2E/ 98
Ox1A2F

4.2.3 Indication of acyclic Data Transfer Ox1A3E/ 107
Ox1A3F

424 CIP Object Change Indication Ox1AFA/ | 120
Ox1AFB

Table 57: Indication Packets Using the Extended Packet Set

3.2.24 Configuration Sequence

The following Figure 3 illustrates an example packet sequence using the Extended Packet Set.
Using the shown sequence and packets will basically give you a configuration that is equal to the
configuration you get when using the Basic Packet Set. Of course, you can use additional packets
to further extend your Device’s object model or activate additional functionalities.

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Getting Started/ Configuration 47/172

Configuration Sequence Using the Extended Configuration Set

:Register Application :

RCX_REGISTER_APP_REQ _

Lt

Save link to application

il
-

I
|
I
l
i
| RCX_REGISTER_APP_CNF
f
I
i
|
i

alt :
|

: : Create Vendor Specific Objects : :
| | |

loo | | |
| | |
| EIP_OBJECT_MR_REGISTER_REQ | l
\ > \
| |
i P
i]
| |
| EIP_OBJECT_MR_REGISTER_CNF \
. i
| : |
: : Create Assembly Instances : :
| . |

loo : : :
i i i
| EIP_OBJECT_AS_REGISTER_REQ | |
I = |
i -
| Lt
: i
i i
' EIP_OBJECT_AS_REGISTER_CNF !
| | |
| |

: configure internal objects :
loo

EIP_OBJECT_CIP_SERVICE_REQ

.
- |

:Conﬁrm Configuation |

EIP_APS_CONFIG_DONE_REQ !

|
I
T
I
|
I
|
I
|
|
|
|
|
|
|
|
T
I
|
I
|
Lt |
|
|
|
|
|
1
]
|
I
|
I
|
I
|
I
|
|
|

|
i
i
|
i
|
|
|
:
|
| EIP_OBJECT_CIP_SERVICE_CNF
|
|
|
I
T
i
|
i
|
i
|
|

EIP_APS_CONFIG_DONE_CNF

1l
-

:Start Communication :

|
|
1
l .
i i
' RCX_START_STOP_COMM_REQ _ '
|
i
|

Lot

RCX_START STOP_COMM_CNF

<l
il

Start communication

Figure 3: Configuration Sequence Using the Extended Packet Set

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Getting Started/ Configuration 48/172
3.3 Example Configuration Process

For configuration examples please refer to the example code SetConfigExample and
ExtendedConfigExample.

3.3.1 Handling of Configuration Data Changes

In an EtherNet/IP environment it is possible that the values of CIP Objects Attributes within the
device can be change via the network by external components like a configuration tool or an
EtherNet/IP Scanner (Master).

Some CIP Object Attributes are defined to be “non-volatile”, which means non-volatile storage is
required for these attributes. This way when setting the attribute its value is maintained through
power cycles.

An example for such a non-volatile attribute is the attribute #5 of the TCP/IP Interface Object (class
ID OxF5). This attribute holds the IP Address configuration of the device. Storing this attribute into
non-volatile memory makes it possible that the device does not lose its IP address after a power
cycle.

Figure 4 illustrates the CIP Objects and attributes that are non-volatile and need to be handled by
the host application. Every time such an attribute is written via the network an indication is sent to
the host application. This indication notifies the host application about the change and provides the
new attribute value (see packet command “CIP Object Change Indication”).

EtherNet/IP Device Time Sync (0x43)

Instance 1

Aty #1
Attr #13
Attr #14
Atr #15
Attr #18

Ethemet Link (OxF6)

Instance 1,2

At #6
At #3

TCP/IP
Interface (OxF5)

Instance 1
QoS (0x48)
Adtr #3
Instance 1 Al #
Attr #6
Attr #1 Attr #8
Attr #2 Attr #9
Adtr #3 Attr #10
Attr #4 Attr #11
Attr #5 Attr #12
Attr #6 Attr #13
Attr #7
Attr #8

Figure 4: Non-Volatile CIP Object Attributes

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface

49/172

4 The Application Interface

This chapter defines the application interface of the Ethernet/IP Adapter.

4.1

Configuring the EtherNet/IP Adapter

This chapter explains the packets used for configuring the EtherNet/IP Adapter using the packet

interface. Details about the configuration sequence are explained at chapter 3.2

The following packets are available for the configuration:

Overview over the configuration packets of the EtherNet/IP Adapter

No. of Packet Command Page
section code

(REQI/CNF or

IND/RES)
4.1.1 EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ 0x00003612 | 50
4.1.2 EIP_APS_SET_PARAMETER_REQ 0x0000360A | 60
413 EIP_APS_CONFIG_DONE_REQ 0x00003614 | 143
4.1.4 EIP_OBJECT_MR_REGISTER_REQ 0x00001A02 | 65
415 EIP_OBJECT_AS_REGISTER_REQ 0x00001A0C | 68
4.1.6 EIP_OBJECT_ID_SETDEVICEINFO_REQ 0x00001A16 | 74
4.1.7 EIP_OBJECT_REGISTER_SERVICE_REQ 0x00001A44 | 79
4.1.8 EIP_OBJECT_CIP_SERVICE_REQ Ox00001AF8 | 82
4.1.10 RCX_SET_WATCHDOG_TIME_REQ 0x00002F04 | 92
4.1.11 RCX_REGISTER_APP_REQ 0x00002F10 | 92
4.1.12 RCX_START_STOP_COMM_REQ 0x00002F30 | 92
4,1.13 RCX_CHANNEL_INIT_REQ 0x00002F80 | 92
4.1.14 RCX_SET_FW_PARAMETER_REQ 0x00002F86 | 144

Table 58: Overview over the configuration packets of the EtherNet/IP Adapter

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

The Application Interface 50/172

4.1.1 Configure the Device with Configuration Parameter

Note:

This packet replaces the packet EIP_APS SET CONFIGURATION_REQ(cmd:0x3608).
For compatibility reasons this packet is still supported. However, for new developments
only the packet EIP_APS SET CONFIGURATION_PARAMETERS REQ (cmd: 0x3612)
shall be used.

This service can be used by the host application in order to configure the device with configuration
parameters. This packet is part of the basic packet set and provides a basic configuration to all
default CIP objects within the stack.

Using this configuration method the stack automatically creates two assembly instances that can
be used implicit/cyclic communication. The 1/O data of these instances will start at offset O at the
dual port memory (relative offset to the input and output areas of the DPM).

Note: If you set usVendld, usProductType and usProductCode to zero, Hilscher’s
firmware standard values will be applied for the according variables.

The following rules apply for the behavior of the EtherNet/IP Adapter Stack when receiving a set
configuration command:

The configuration data is checked for consistency and integrity.
In case of failure no data is accepted.
In case of success the configuration parameters are stored internally (within the RAM).

The parameterized data will be activated only after a channel init
(RCX_CHANNEL_INIT_REQ).

This packet does not perform any registration at the stack automatically. Registering must be
performed with a separate packet such as the registration packet described in the netX Dual-
Port-Memory Manual (RCX_REGISTER_APP_REQ, code Ox2F10).

This request will be denied if the “configuration locked” flag is set in the DPM.

EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ/CNF

I
EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ |

Check and save parameters

EIP_APS_SET_CONFIGURATION_PARAMETERS_CNF

1

¥

Figure 5: Sequence Diagram for the EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ/CNF Packet

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface 51/172

Packet Structure Reference
typedef struct EIP_DPMINTF_QOS_CONFIG_Ttag

TLR_UINT32 ulQoSFlags;

TLR_UINT8 bTag802Enable;
TLR_UINTS bDSCP_PTP_Event;
TLR_UINTS bDSCP_PTP_General ;
TLR_UINT8 bDSCP_Urgent;
TLR_UINT8 bDSCP_Scheduled;
TLR_UINTS bDSCP_High;
TLR_UINTS bDSCP_Low;
TLR_UINT8 bDSCP_Explicit;

} EIP_DPMINTF_QOS_CONFIG_T;
typedef struct EIP_DPMINTF_TI_ACD_LAST CONFLICT Ttag

TLR_UINT8 bAcdActivity; /*1< State of ACD activity when last
conflict detected */

TLR_UINT8 abRemoteMac[6] ; /*1< MAC address of remote node from
the ARP PDU in which a conflict was
detected */

TLR_UINT8 abArpPdu[28]; /*1< Copy of the raw ARP PDU in which
a conflict was detected. */
} EIP_DPMINTF_TI_ACD_LAST_CONFLICT_T;

typedef struct EIP_DPMINTF_TI_MCAST_CONFIG_Ttag

TLR_UINT8 bAllocControl ; /* Multicast address allocation control
word. Determines how addresses are
allocated. */

TLR_UINT8 bReserved;

TLR_UINT16 usNumMCast ; /* Number of IP multicast addresses

to allocate for EtherNet/IP */
TLR_UINT32 ulMcastStartAddr; /* Starting multicast address from which */
} EIP_DPMINTF_TI_MCAST_CONFIG_T;

typedef struct EIP_APS_CONFIGURATION_PARAMETER_SET V3_Ttag

TLR_UINT32 ulSystemFlags;

TLR_UINT32 ulWdgTime;

TLR_UINT32 ullnputLen;

TLR_UINT32 ulOutputLen;

TLR_UINT32 ulTcpFlag;

TLR_UINT32 ullpAddr;

TLR_UINT32 ulNetMask;

TLR_UINT32 ulGateway;

TLR_UINT16 usVendld;

TLR_UINT16 usProductType;

TLR_UINT16 usProductCode;

TLR_UINT32 ulSerialNumber;

TLR_UINT8 bMinorRev;

TLR_UINT8 bMajorRev;

TLR_UINT8 abDeviceName[32];

TLR_UINT32 ullnputAssinstance;

TLR_UINT32 ullnputAssFlags;

TLR_UINT32 ulOutputAssinstance;

TLR_UINT32 ulOutputAssFlags;

EIP_DPMINTF_QOS_CONFIG_T tQoS_Config;

TLR_UINT32 ulNameServer;

TLR_UINT32 ulNameServer_2;

TLR_UINT8 abDomainName[48 + 2];

TLR_UINT8 abHostName[64+2] ;

TLR_UINT8 bSelectAcd;

EIP_DPMINTF_TI_ACD_LAST_CONFLICT_T tLastConflictDetected;

TLR_UINT8 bQuickConnectFlags;

TLR_UINT8 abAdminState[2];

TLR_UINT8 bTTLValue;

EIP_DPMINTF_TI_MCAST_CONFIG_T tMCastConfig;

TLR_UINT16 usEncaplnactivityTimer;
} EIP_APS_CONFIGURATION_PARAMETER_SET_V3_T;

typedef struct EIP_APS_SET CONFIGURATION_PARAMETERS REQ Ttag
TLR_UINT32 ulParameterVersion; /*I< Version related to the following configuration union */

union

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface

52/172

EIP_APS_CONFIGURATION_PARAMETER_SET V1 T tV1;
EIP_APS_CONFIGURATION_PARAMETER_SET_V2_ T tV2;
EIP_APS_CONFIGURATION_PARAMETER_SET_V3_T tV3;

} unConfig;

3 EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ T;

typedef struct EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS REQ Ttag

TLR_PACKET_HEADER_T

tHead;

EIP_APS_SET_CONFIGURATION_PARAMETERS REQ T tData;
JEIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_REQ T:

Packet Description

structure EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_REQ_T

Type: Request

Variable

Type

Value / Range

Description

tHead - Structure TLR_PACKET HEADER_T

ulDest UINT32 0x20/ Destination Queue-Handle
DPMINTF_QUE
ulSrc UINT32 0..2%1 Source Queue-Handle
ulDestld UINT32 See rulesin Destination End Point Identifier, specifying the final
section 3.2.1 receiver of the packet within the Destination Process.
Set to O for the Initialization Packet
ulSrclid UINT32 See rulesin Source End Point Identifier, specifying the origin of the
section 3.2.1 packet inside the Source Process
ulLen UINT32 271 Packet Data Length in bytes
ulld UINT32 0..2%1 Packet Identification as unique number generated by
the Source Process of the Packet
ulSta UINT32 See chapter Status/Error Codes Overview
ulCmd UINT32 0x3612 EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ -
Command
ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons
ulRout UINT32 X Routing, do not touch

tData - Structure EIP_APS_SET_CONFIGU

RATION_ PARAMETERS_REQ T

ulParameterVersion

UINT32

3 (latest
version)

Version of the following parameter structure

unConfig.-tVv3

UNION

For parameter set version 3 the structure in Table 60
must be used.

Table 59: EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS REQ - Set Configuration Parameters Request

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

The Application Interface

53/172

Structure EIP_APS_CONFIGURATION_PARAMETER_SET_V3_T

ulSystemFlags

UINT32 (Bit
field)

0,1

System flags area

The start of the device can be performed either
application controlled or automatically:

Automatic (0): Network connections are opened
automatically without taking care of the state of the
host application. Communication with a controller after
a device start is allowed without BUS_ON flag, but the
communication will be interrupted if the BUS_ON flag
changes state to 0

Application controlled (1): The channel firmware is
forced to wait for the host application to wait for the
Application Ready flag in the communication change of
state register (see section 3.2.5.1 of reference [1]).
Communication with controller is allowed only with the
BUS_ON flag.

For more information concerning this topic see section
4.4.1 “Controlled or Automatic Start” of reference [1].

ulwdgTime

UINT32

0, 20..65535

Watchdog time (in milliseconds).

0 = Watchdog timer has been switched off
Default value: 1000

ullnputLen

UINT32

0..504
Default: 16

Length of Input data (O->T direction, data the device
receives from a Scanner)

ulOutputLen

UINT32

0..504
Default: 16

Length of Output data (T->O direction, data the device
sends to a Scanner)

ulTcpFlag

UINT32

Default value:
0x00000410

The TCP flags configure the TCP stack behavior
related the IP Address assignment (STATIC, BOOTP,
DHCP) and the Ethernet port settings (such as Auto-
Neg, 100/10MBits, Full/Half Duplex).

For more information see Table 61 “Meaning of
Contents of Flags Area”.

Default value:
0x00000410 (both ports set to DHCP + Autoneg)

ul IPAddr

UINT32

All valid IP-
addresses
Default: 0.0.0.0

IP Address

See detailed explanation in the corresponding TCP/IP
Manual (reference [2])

ulNetMask

UINT32

All valid masks
Default: 0.0.0.0

Network Mask

See detailed explanation in the corresponding TCP/IP
Manual (reference [2])

ulGateway

UINT32

All valid IP-
addresses
Default: 0.0.0.0

Gateway Address

See detailed explanation in the corresponding TCP/IP
Manual (reference [2])

usVendorlID

UINT16

0..65535

Vendor identification:

This is an identification number for the manufacturer of
an EtherNet/IP device.

Vendor IDs are managed by ODVA (see
www.odva.org).
The value zero is not valid.

Default value: 283 (Hilscher)

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

http://www.odva.org/

The Application Interface

54/172

usProductType

UINT16

0..65535

CIP Device Type (former “Product Type”)

The list of device types is managed by ODVA (see
www.odva.org). It is used to identify the device profile
that a particular product is using. Device profiles define
minimum requirements a device must implement as
well as common options.

Publicly defined: 0x00 - 0x64
Vendor specific: 0x64 - OxC7
Reserved by CIP: 0xC8 - OxFF
Publicly defined: 0x100 - Ox2FF
Vendor specific: 0x300 - Ox4FF
Reserved by CIP: 0x500 - OxFFFF

Default: 0xOC (Communication Device)

The value 0 is not a valid Product Type. However,
when using value 0 here, the stack automatically
chooses the default Product Type (0x0C).

usProductCode

UINT16

1..65535

Product code

The vendor assigned Product Code identifies a
particular product within a device type. Each vendor
assigns this code to each of its products. The Product
Code typically maps to one or more catalog/model
numbers. Products shall have different codes if their
configuration and/or runtime options are different. Such
devices present a different logical view to the network.
On the other hand for example, two products that are
the same except for their color or mounting feet are the
same logically and may share the same product code.
The value zero is not valid.

The value 0 is not a valid Product Code. However,
when using value 0 here, the stack automatically
chooses the default Product Code dependent on the
chip type (netX50/100 etc.) that is used.

ulSerialNumber

UINT32

0..
OXFFFFFFFF

Serial Number of the device

This parameter is a number used in conjunction with
the Vendor ID to form a unique identifier for each
device on any CIP network. Each vendor is
responsible for guaranteeing the uniqueness of the
serial number across all of its devices.

Usually, this number will be set automatically by the
firmware, if a security memory is available. In this case
leave this parameter at value 0.

bMinorRev

UINT8

1..255

Minor revision

bMajorRev

UINT8

1..127

Major revision

abDeviceName

UINT8[32]

Device Name

This text string should represent a short description of
the product/product family represented by the product
code. The same product code may have a variety of
product name strings.

Byte 0 indicates the length of the name. Bytes 1 -30
contain the characters of the device name)

Example: “Test Name”
abDeviceName[0] =9
abDeviceName[1..9] = “Test Name”

ul InputAssinstance

UINT32

1- 0x8000FFFF
Default: 100

Instance number of input assembly (O->T direction)
See Table 72 “Assembly Instance Number Ranges”

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

http://www.odva.org/

The Application Interface

55/172

ul InputAssFlags

UINT8

Bit mask

Input assembly (O->T) flags

See Table 62 “Input Assembly Flags/ Output Assembly
Flags”

ulOutputAssinstance

UINT32

1- Ox8000FFFF
Default: 101

Instance number of output assembly (T->O direction)
See Table 72 “Assembly Instance Number Ranges”

ulOutputAssFlags

UINT8

Bit mask

Output assembly (T->0) flags

See Table 62 “Input Assembly Flags/ Output Assembly
Flags”

tQoS_Config

EIP_DPMINTF_
QOS_CONFIG
>

Quality of Service configuration

This parameter set configures the Quality of Service
Object (CIP ID 0x48)

ullNameServer

UINT32

See section
0

Name Server 1

This parameter configures the NameServer element of
attribute 5 of the TCP/IP Interface Object.

See section 2.9 “TCP/IP Interface Object (Class Code:
0xF5)“ for more information.

Default: 0.0.0.0

ulNameServer_2

UINT32

See section
0

Name Server 2

This parameter configures the NameServer2 element
of attribute 5 of the TCP/IP Interface Object.

See section 2.9 “TCP/IP Interface Object (Class Code:
0xF5)“ for more information.

Default: 0.0.0.0

abDomainName[48 +

2]

UINTS]]

See section
0

Domain Name

This parameter configures the DomainName element
of attribute 5 of the TCP/IP Interface Object.

See section 2.9 “TCP/IP Interface Object (Class Code:
0xF5)“ for more information.

abHostName[64+2]

UINTS[]

See section
0

Host Name

This parameter configures attribute 6 of the TCP/IP
Interface Object.

See section 2.9 “TCP/IP Interface Object (Class Code:
0xF5)"“ for more information.

bSelectAcd

UINT8

See section
0

Select ACD

This parameter configures attribute 7 of the TCP/IP
Interface Object.

See section 2.9 “TCP/IP Interface Object (Class Code:
0xF5)"“ for more information.

tLastConflictDetect
ed

EIP_DPMINTF_
TI_ACD_LAST_
CONFLICT_T

See section
0

Last Detected Conflict

This parameter configures attribute 11 of the TCP/IP
Interface Object.

See section 2.9 “TCP/IP Interface Object (Class Code:
0xF5)“ for more information.

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

The Application Interface

56/172

bQuickConnectFlags

UINT8

0,1,3
Default: All zero

Quick Connect Flags

This parameter enables/ disables the Quick Connect
functionality within the stack. This affects the TCP
Interface Object (OxF5) attribute 12. See section 2.9
“TCP/IP Interface Object (Class Code: OxF5)" for more
information.

Bit 0 (EIP_OBJECT QC_FLAGS_ACTIVATE_ATTRIBUTE):
If set (1), the Quick Connect Attribute 12 of the TCP
Interface Object (OxF5) is activated (i.e. it is present
and accessible via CIP services). The actual value of
attribute 12 can be configured with bit 1.

Bit 1 (EIP_OBJECT_QC_FLAGS_ENABLE_QC):

This bit configures the actual value of attribute 12. If
set, attribute 12 has the value 1 (Quick Connect
enabled). If not set, Quick connect is disabled. This bit
will be evaluated only if bit 0 is set (1).

abAdminState[2]

UINT8

1,2

Admin State

This parameter configures attribute 9 of the Ethernet
Link Object.

Default: Both entries 0x01 (enabled)

See section 2.10 “Ethernet Link Object (Class Code:
0xF6)“ for more information.

bTTLValue

UINT8

1-255
Default: 1

This parameter corresponds to attribute 8 of the
TCP/IP Interface Object (CIP Id OxF5).

The TTL value attribute shall use for the IP header
Time-to-Live when sending EtherNet/IP packets via
multicast. This attribute shall be stored in non-volatile
memory.

tMCastConTfig

EIP_DPMINTF_
TI_MCAST_CO
NFIG_T

0-3600
Default: 120
seconds

This parameter corresponds to attribute 9 of the
TCP/IP Interface Object (CIP Id OxF5). The MCast
Config set the used multicast range for multicast
connections. This attribute shall be stored in non-
volatile memory.

usEncaplnactivityTi
mer

UINT16

0-3600
Default: 120
seconds

This parameter corresponds to attribute 13 of the
TCP/IP Interface Object (CIP Id OxF5). The
Encapsulation Inactivity Timeout is used to close
sockets when the defined time (seconds) elapsed
without Encapsulation activity. Default: 120

This attribute shall be stored in non-volatile memory.

Table 60: EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_REQ - Configuration Parameter Set V3

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface 57/172

The following flags are available in the flags area:

Bits | Description

31 ... | Reserved for future use
29

28 Speed Selection (Ethernet Port 2):

Only evaluated if bit 15 is set. Behaves the same as bit 12.

27 Duplex Operation (Ethernet Port 2):

Only evaluated if bit 15 is set. Behaves the same as bit 11.

26 Auto-Negotiation (Ethernet Port 2):

Only evaluated if bit 15 is set. Behaves the same as bit 10.

25 ... | Reserved for future use
16

15 Extended Flag:

This flag can be used if the device has two Ethernet ports. In that case the two ports can be configured
separately regarding “Speed Selection”, “Duplex Operation” and “Auto-Negotiation”

If not set (0), both ports are configured with the same parameters using the bits 10 to 12.

If set (1), port 1 is configured using bits 10 to 12. Port 2 is configured using the bits 26 to 28.

13 .. | Reserved for future use
14

12 Speed Selection: (Ethernet Port 1)
If set (1), the device will operate at 100 MBit/s, otherwise at 10 MBit/s.

This parameter will only be evaluated, if auto-negotiation (bit 10) is not set (0).

11 Duplex Operation: (Ethernet Port 1)
If set (1), full-duplex operation will be enabled, otherwise the device will operate in half duplex mode

This parameter will only be evaluated, if auto-negotiation (bit 10) is not set (0).

10 Auto-Negotiation: (Ethernet Port 1)
If set (1), the device will negotiate speed and duplex with connected link partner.

If set (1), this flag overwrites Bit 11 and Bit 12 .

9 ... 5 | Reserved for future use

4 Enable DHCP:
If set (1), the device tries to obtain its IP configuration from a DHCP server.

3 Enable BOOTP:
If set (1), the device tries to obtain its IP configuration from a BOOTP server.

2 Gateway available:
If set (1), the content of the ulGateway parameter will be evaluated.

If the flag is not set (0), ulGateway must be set to 0.0.0.0.

1 Netmask available:

If set (1), the content of the ulNetMask parameter will be evaluated. If the flag is not set the device will
assume to be an isolated host which is not connected to any network. The ulGateway parameter will be
ignored in this case.

0 IP address available:
If set (1), the content of the ul IpAddr parameter will be evaluated. In this case the parameter ulNetMask
must be a valid net mask.

Table 61: Meaning of Contents of Flags Area

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface 58/172

The input assembly flags and the output assembly flags are defined as follows:

Flag Meaning

Bit0 This flag is used internally and must be set to 0.

Bit 1 This flag is used internally and must be set to 0.

Bit 2 This flag is used internally and must be set to 0.

Bit 3 If set (1), the assembly instance’s real time format is modeless, i.e. it does not contain

run/idle information.

If not set (0), the assembly instance’s real time format is the 32-Bit Run/Idle header.

Bit 4 This flag is used internally and must be setto 0
Bit 5 This flag is used internally and must be set to 0
Bit 6 This flag decides whether the assembly data which is mapped into the DPM memory

area is cleared upon closing or timeout of the connection or whether the last
sent/received data is left unchanged in the memory.

If the bit is set (1) the data will be left unchanged.

Bit 7 This flag decides whether the assembly instance allows a connection to be established
with a smaller connection size than defined in ul InputLen/ulOutputLen or whether
only the exact match is accepted. If the bit is set (1), the connection size in a
ForwardOpen must directly correspond to ul InputLen/ulOutputLen.

Example:

1) ullnputLen = 16 (Bit 7 of ullnputAssFlags is not set (0))
ulOutputLen = 32 (Bit 7 of ulOutputAssFlags is not set (0))
A connection can be opened with smaller or matching 1/0 sizes,
e.g- 8 for input and 20 for output.

2)ullnputLen =6 (Bit 7 of ullnputAssFlags is set (1))
ulOutputLen = 10 (Bit 7 of ulOutputAssFlags is set (1))
A connection can only be opened with matching 1/0 sizes, 6 for
input and 10 for output.

Table 62: Input Assembly Flags/ Output Assembly Flags

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface

59/172

Packet Structure Reference

typedef struct EIP_APS_SET_CONFIGURATION_PARAMETERS CNF_Ttag

TLR_UINT32

union

ulPacketVersion;

/*1< Version related to the following union entry */

EIP_APS_CONFIGURATION_PARAMETER_SET_V1 T tV1;
EIP_APS_CONFIGURATION_PARAMETER _SET V2 T tV2;
EIP_APS_CONFIGURATION_PARAMETER_SET V3 T tV3

}unConfig;

3 EIP_APS_SET_CONFIGURATION_PARAMETERS_CNF_T;

typedef struct EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_CNF_Ttag

TLR_PACKET_HEADER_T
EIP_APS_SET_CONFIGURATION_PARAMETERS_CNF_T tData;
3 EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_CNF_T;

Packet Description

tHead;

Structure EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_CNF_T

Type: Confirmation

Variable

Type

Value / Range

Description

tHead — Structure TLR_PACKET_HEADER

T

ulDest UINT32 | Seerulesin Destination Queue Handle
section 3.2.1
ulSrc UINT32 | Seerulesin Source Queue Handle
section 3.2.1
ulDestlid UINT32 | See rulesin Destination Queue Reference
section 3.2.1
ulSrcld UINT32 | See rulesin Source Queue Reference
section 3.2.1
ulLen UINT32 | Size from Packet Data Length in bytes
request packet
ulld UINT32 [0..2%1 Packet Identification as unique number generated by the Source
Process of the Packet
ulSta UINT32 See chapter Status/Error Codes Overview
ulCmd UINT32 |0x3613 EIP_APS_SET_CONFIGURATION_PARAMETERS_CNF - Command
ulExt UINT32 |0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 |Xx Routing, do not touch

tData - Structure EIP_APS _

SET_CONFIGURATION_ PARAMETERS_CNF_T

ulParameterV | UINT32 Version of the following parameter structure (from request packet)
ersion
unConfig UNION Configuration Set (from request packet)

Table 63: EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_CNF — Set Configuration Parameters Confirmation

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

The Application Interface 60/172

4.1.2 Set Parameter Flags

This packet can be sent by the host application to activate special functionalities or behaviors of the
AP-Task. The request packet therefore contains a flag field in which each bit stands for a specific
functionality.

Table 64 shows all available flags:

Bit Description
0 Flag IP_APS_PRM_SIGNAL_MS NS_CHANGE (0x00000001)

If set (1), the host application will be notified whenever the network or module status changes. The module and
the network status are displayed by LEDs at EtherNet/IP devices (see section 6.1 “Module and Network
Status” for more information). The notification will be sent with the indication packet Link Status Change.

If not set (0) no notifications will be sent.

1..31 | Reserved for future use.
Table 64: EIP_APS_SET_PARAMETER_REQ Flags

Figure 6 below displays a sequence diagram for the EIP_APS_SET_PARAMETER_REQ/CNF
packet.

EIP_APS_SET_PARAMETER_REQ/CNF

EIP_APS_SET_PARAMETER_REQ '

|
|
:
|
I Check and save parameters
1
|
|
|
|

| FIP_APS_SET_PARAMETER_CNF

Figure 6: Sequence diagram for the EIP_APS_SET_PARAMETER_REQ/CNF packet

Packet Structure Reference
#define EIP_APS_PRM_SIGNAL_MS_NS_CHANGE 0x00000001

typedef struct EIP_APS_SET_ PARAMETER_REQ_ Ttag

TLR_UINT32 ulParameterFlags; /*1< Parameter flags \n
} EIP_APS_SET_PARAMETER_REQ_T;

#define EIP_APS_SET PARAMETER REQ SIZE (sizeof(EIP_APS_SET PARAMETER_REQ T))
typedef struct EIP_APS_PACKET_SET_PARAMETER_REQ Ttag
TLR_PACKET_HEADER_T tHead;

EIP_APS_SET_PARAMETER_REQ T thata;
3 EIP_APS_PACKET_SET_PARAMETER_REQ T;

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface 61/172

Packet Description

structure EIP_APS_PACKET_SET_PARAMETER REQ T

Type: Request

Area | Variable ‘ Type ‘ Value / Range Description

tHead | structure TLR_PACKET_HEADER_T

ulDest UINT32 |0x20/ Destination Queue-Handle
DPMINTF_QUE
ulSrc UINT32 |[0..2%1 Source Queue-Handle
ulDestld UINT32 See rules in Destination End Point Identifier, specifying the final
section 3.2.1 receiver of the packet within the Destination Process. Set
to 0O for the Initialization Packet
ulSrcld UINT32 See rules in Source End Point Identifier, specifying the origin of the
section 3.2.1 packet inside the Source Process
ulLen UINT32 |4 Packet Data Length in bytes
ulld UINT32 [0..2%1 Packet Identification as unique number generated by the
Source Process of the Packet
ulSta UINT32 See Packet Structure Reference
ulCmd UINT32 | 0x360A EIP_APS_SET PARAMETER_REQ - Command
ulExt UINT32 |0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 X Routing, do not touch

tData | structure EIP_APS_SET_PARAMETER_REQ_T

ulParameterFlags | UINT32 | See Table 64 for | Bit field
possible values

Table 65: EIP_APS_SET_PARAMETER_REQ - Set Parameter Flags Request

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface

62/172

Packet Structure Reference
#define EIP_APS_SET_PARAMETER_CNF_SIZE 0

typedef struct EIP_APS_PACKET_SET_PARAMETER_CNF_Ttag

TLR_PACKET HEADER T tHead;
3 EIP_APS_PACKET_SET_PARAMETER CNF_T;

Packet Description

structure EIP_APS_PACKET_SET_PARAMETER_CNF_T

Type: Confirmation

Area

Variable

‘ Type

| Value / Range

Description

tHead

structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination Queue-Handle

ulSrc UINT32 Source Queue-Handle

ulDestld UINT32 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process. Set
to 0O for the Initialization Packet

ulSrcld UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 |0 Packet Data Length in bytes

ulld UINT32 [0..2%1 Packet Identification as unique number generated by the
Source Process of the Packet

ulSta UINT32 See Packet Structure Reference

ulCmd UINT32 | 0x360B EIP_APS_SET_PARAMETER_CNF - Command

ulExt UINT32 |0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Table 66: EIP_APS_SET_PARAMETER_CNF — Confirmation to Set Parameter Flags Request

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

The Application Interface 63/172

4.1.3 Finish configuration of CIP Objects

The packet is used for the extended configuration

This packet can be used by the EtherNet/IP Adapter Application in order to signal that all CIP
objects are configured and the EtherNet/IP Adapter Stack shall start.

EIP_APS_CONFIG_DONE_REQ/CNF

EtherMet/IP Adapter
Application AP Task Frotocol Stack

EIP_APS_CONFIG_DONE_REQ !

| activate stack

| FIP_APS_CONFIG_DONE_CNF |

Figure 7: Sequence Diagram for the EIP_APS_CONFI1G_DONE_REQ/CNF Packet

Packet Structure Reference
#define EIP_APS_CONFIG_DONE_REQ SIZE 0

typedef struct EIP_APS_PACKET_CONFIG_DONE_REQ Ttag

TLR_PACKET_HEADER_T tHead;
3 EIP_APS_PACKET_CONFIG_DONE_REQ T;

Packet Description

structure EIP_APS_PACKET_CONFIG_DONE_REQ_T

Type: Request

Area |Variable ‘ Type ‘ Value / Range Description

tHead | structure TLR_PACKET_HEADER_T

ulDest UINT32 | O0x20/ Destination Queue-Handle
DPMINTF_QUE
ulSrc UINT32 |0..2%1 Source Queue-Handle
ulDestld UINT32 See rules in Destination End Point Identifier, specifying the final
section 3.2.1 receiver of the packet within the Destination Process. Set
to O for the Initialization Packet
ulSrcld UINT32 See rules in Source End Point Identifier, specifying the origin of the
section 3.2.1 packet inside the Source Process
ulLen UINT32 |0 Packet Data Length in bytes
ulld UINT32 |[0..2%1 Packet Identification as unique number generated by the
Source Process of the Packet
ulSta UINT32 See Packet Structure Reference
ulCmd UINT32 | 0x3614 EIP_APS_CONFIG_DONE_REQ - Command
ulExt UINT32 |0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 X Routing, do not touch

Table 67: EIP_APS_CONFIG_DONE_REQ — Signal end of configuration request

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface

64/172

Packet Structure Reference
#define EIP_APS_CONFIG_DONE_CNF_SIZE O

typedef struct EIP_APS_PACKET_CONFIG_DONE_CNF_Ttag

TLR_PACKET_HEADER_T

tHead;

3 EIP_APS_PACKET_CONFIG_DONE_CNF_T;

Packet Description

structure EIP_APS_PACKET_CONFIG_DONE_CNF_T

Type: Confirmation

Area

Variable

‘ Type

‘ Value / Range

Description

tHead

structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination Queue-Handle

ulSrc UINT32 Source Queue-Handle

ulDestld UINT32 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process. Set
to 0 for the Initialization Packet

ulSrcld UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 |0 Packet Data Length in bytes

ulld UINT32 |[0..2%1 Packet Identification as unique number generated by the
Source Process of the Packet

ulSta UINT32 See Packet Structure Reference

ulCmd UINT32 | 0x3615 EIP_APS_CONFIG_DONE_CNF - Command

ulExt UINT32 |0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Table 68: EIP_APS_CONFIG_DONE_CNF — Confirmation of end of configuration Request

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

The Application Interface 65/172

4.1.4 Register an additional Object Class at the Message Router

This service can be used by the host application in order to register or activate an additional object
class at the message router. This automatically extends the object model of the device by the given
object class (see Figure 1 for the basic object model).

Basically, there are two types for additional objects that can be registered.

1) Register a CIP object that is provided by the stack (e.g. Time Sync object). In that case an
object is activated that is completely handled by the stack (such as the Ethernet Link or
TCP/IP Interface object).

2) Register a CIP object that is not known to the stack and therefore completely handled by the
host application

For type 2 all explicit messages addressing this additional object class will then be forwarded to the
host application via the indication EIP_OBJECT_CL3_SERVICE_IND (section 4.2.3).

Note: When using the Stack Packet Set:

The source queue of this packet is directly bound to the new object. All indications for
the new object will be sent to ulSrc and ulSrcld of the request packet (packet header).

The ulClass parameter represents the class code of the registered class. The predefined class
codes are described in the CIP specification Vol. 1 chapter 5.

CIP Class IDs are divided into the following address ranges to provide for extensions to device
profiles.

Address Range Meaning

0x0001 - 0x0063 Open

0x0064 - 0x00C7 Vendor Specific

0x00CS8 - OxO0EF Reserved by ODVA for future use
0x00FO0 - Ox02FF Open

0x0300 - Ox04FF Vendor Specific

0x0500 - OXFFFF Reserved by ODVA for future use

Table 69: Address Ranges for the ulClass parameter

Figure 8 below displays a sequence diagram for the EIP_OBJECT MR _REGISTER_REQ/CNF
packet.

EIP_OBJECT _MR_REGISTER_REQ/CNF (Stack Packet Set)

EIP_OBJECT_MR_REGISTER_REQ |

I
I
:
| Check and apply parameters
l
i
|
|

IP_OBJECT MR_REGISTER_CNF

<

Figure 8: Sequence Diagram for the EIP_OBJECT_MR_REGISTER_REQ/CNF Packet for the Stack Packet Set

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface 66/172

Packet Structure Reference
typedef enum EIP_OBJECT _MR_REGISTER_OPTION_FLAGS_Etag

{
EIP_OBJECT_MR_REGISTER_OPTION_FLAGS_USE_OBJECT_PROVIDED_BY_STACK = 1, /* Activate a stack internal
CIP object.
This option can currently
be used for the following
CIP objects
- Time Sync object
(class code 0x43)
*/
} EIP_OBJECT_MR_REGISTER_OPTION_FLAGS_E;

typedef struct EIP_OBJECT_MR_REGISTER_REQ Ttag {

TLR_UINT32 ulReservedl;

TLR_UINT32 ulClass;

TLR_UINT32 ulOptionFlags; /* EIP_OBJECT_MR_REGISTER_OPTION_FLAGS_E */
} EIP_OBJECT_MR_REGISTER_REQ T;

#define EIP_OBJECT MR_REGISTER REQ SIZE \
sizeof(EIP_OBJECT MR_REGISTER_REQ T)

typedef struct EIP_OBJECT MR_PACKET REGISTER REQ Ttag {
TLR_PACKET HEADER T tHead;
EIP_OBJECT MR_REGISTER _REQ T tData;

3 EIP_OBJECT_MR_PACKET_REGISTER_REQ T;

Packet Description

Structure EIP_OBJECT_PACKET_MR_REGISTER_REQ_T Type: Request

Variable Type Value / Range Description

tHead — Structure TLR_PACKET_HEADER_T

ulDest UINT32 0x20/ Destination Queue-Handle. Set to
OBJECT_QUE

0: Destination is operating system rcX
32 (0x20): Destination is the protocol stack

ulSrc UINT32 0..2%1 Source Queue-Handle. Set to:

0: when working with loadable firmware.
Queue handle returned by TLR_QUE_IDENTIFY():
when working with loadable firmware.

ulDestld UINT32 0 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

Set to 0, will not be changed

ulSrcld UINT32 0..2%1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process. This variable may be
used for low-level addressing purposes.

ulLen UINT32 12 EIP_OBJECT_MR_REGISTER_REQ_SIZE
— Packet data length in bytes

ulld UINT32 0..2%%1 Packet Identification as unique number generated by
the Source Process of the Packet

ulSta UINT32 See Table 44: EIP_OBJECT_MR_REGISTER_REQ —
Packet Status/Error

ulCmd UINT32 0x1A02 EIP_OBJECT_MR_REGISTER_REQ - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons

ulRout UINT32 X Routing, do not change

tData - Structure EIP_OBJECT_MR_REGISTER_REQ T
ulReservedl UINT32 0 Reserved, setto 0

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface 67/172

Structure EIP_OBJECT_PACKET_MR_REGISTER_REQ_T Type: Request

ulClass UINT32 1..0xFFFF Class identifier (predefined class code as described in
the CIP specification Vol. 1 chapter 5 (reference [3])
Take care of the address ranges specified above within
Table 69: Address Ranges for the ulClass parameter.

ulOptionFlags UINT32 For type 1, setto 0

For type 2, set flag
EIP_OBJECT_MR_REGISTER_OPTION_FLAGS_USE_O
BJECT_PROVIDED_BY_STACK

Additional CIP object that can be registered with type 2:
- Time Sync object (class code 0x43)

Table 70: EIP_OBJECT_MR_REGISTER_REQ - Request Command for register a new class object

Packet Structure Reference

typedef struct EIP_OBJECT PACKET MR_REGISTER CNF_Ttag {
TLR_PACKET HEADER_ T tHead;
3 EIP_OBJECT_PACKET_MR_REGISTER_CNF_T;

Packet Description

Structure EIP_OBJECT_PACKET_MR_REGISTER_CNF_T Type: Confirmation
Variable Type Value / Range Description
tHead — Structure TLR_PACKET_HEADER_T
ulDest UINT32 See rules in Destination Queue Handle
section 3.2.1
ulSrc UINT32 See rules in Source Queue Handle
section 3.2.1
ulDestld UINT32 See rules in Destination End Point Identifier, specifying the final
section 3.2.1 receiver of the packet within the Destination Process.
ulSrcid UINT32 See rules in Source End Point Identifier, specifying the origin of the
section 3.2.1 packet inside the Source Process
ulLen UINT32 0 Packet data length in bytes
ulld UINT32 0..2%1 Packet Identification, unchanged
ulSta UINT32 See chapter Status/Error Codes Overview
ulCmd UINT32 0x1A03 EIP_OBJECT_MR_REGISTER_CNF - Command
ulExt UINT32 0 Extension, reserved
ulRout UINT32 See rules in Destination Queue Handle
section 3.2.1

Table 71: EIP_OBJECT_MR_REGISTER_CNF — Confirmation Command of register a new class object

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface 68/172

4.1.5 Register a new Assembly Instance

This service can be used by the host application in order to create a new Assembly Instance.

The parameter ullnstance is the assembly instance number that shall be registered at the
assembly class object.

Instances of the assembly object are divided into the following address ranges:

Assembly Instance Meaning
Number Range

0x0001 - 0x0063 Open (assemblies defined in device profile)
0x0064 - 0x00C7 Vendor Specific assemblies
0x00CS8 - Ox02FF Open (assemblies defined in device profile)
0x0300 - Ox04FF Vendor Specific assemblies
0x0500 - OXO00FFFFF Open (assemblies defined in device profile)

0x00100000 - OXxFFFFFFFF | Reserved by CIP for future use.
Table 72: Assembly Instance Number Ranges

Note: The instance numbers 192 and 193 (OxCO and 0xC1) are the Hilscher’s default
assembly instances for Listen Only and Input Only connections. These instance
numbers must not be used for additional assembly instances at configuration with
Basic Configuration Set.

Data belonging to this specific assembly instance will be mapped into the dual port memory at the
offset address ulDPMOffset.

Note: This offset (ulDPMOFffset) is not the total DPM offset. It is the relative offset
within the beginning of the corresponding input/output data images
abPdOInput[5760] and abPdOOutput[5760] (see reference [1]).

So, usually the first instance (for each data direction) that is created will have
ulDPMOffset = O.

If multiple assembly instances are registered, make sure that the data range of these
instances does not overlap in the DPM.

Note: When using the Basic Configuration Set default assemblies will be created on
offset address 0.

The data length (in bytes) the assembly instance shall hold can be provided in ulSize. The size of
an instance may not exceed 504 bytes.

The properties of the assembly instance can be configured using the parameter ulFlags.
Properties can be set according to Table 74: Assembly Instance Table 74 below.

As long as no data has ever been set and no connection has been established, the Assembly
Object Instance holds zeroed data.

Figure 9 below displays a sequence diagram for the EIP_OBJECT_AS REGISTER_REQ/CNF
packet.

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface 69/172

EIP_OBJECT _AS_REGISTER_REQ/CNF (Stack Packet Set)

1 I
' EIP_OBJECT_AS_REGISTER_REQ '

1
1 .
1 Check parameters and create instance
1
1
1
i
1

EIP_OBJECT AS REGISTER CNF

il
L)

Figure 9: Sequence Diagram for the EIP_OBJECT_AS_REGISTER_REQ/CNF Packet for the Stack Packet Set

Packet Structure Reference
typedef struct EIP_OBJECT AS REGISTER REQ Ttag {

TLR_UINT32 ul Instance;
TLR_UINT32 ulDPMOffset;
TLR_UINT32 ulSize;
TLR_UINT32 ulFlags;

} EIP_OBJECT_AS_REGISTER REQ T;

#define EIP_OBJECT AS REGISTER _REQ SIZE \
sizeof(EIP_OBJECT_AS_REGISTER_REQ T)

typedef struct EIP_OBJECT_AS_PACKET_REGISTER_REQ Ttag {
TLR_PACKET_HEADER_T tHead;
EIP_OBJECT_AS_REGISTER_REQ_T tData;

} EIP_OBJECT_AS_PACKET_REGISTER_REQ T;

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface

70/172

Packet Description

Structure EIP_OBJECT_AS_PACKET REGISTER_REQ T

Type: Request

Variable

Type

Value / Range

Description

tHead — Structure TLR_|

PACKET_HEADER_T

ulDest UINT32 0, 0x20 Destination Queue-Handle. Set to
0: Destination is operating system rcX
32 (0x20): Destination is the protocol stack

ulSrc UINT32 0..2%1 Source Queue-Handle. Set to:
0: when working with loadable firmware.
Queue handle returned by TLR_QUE_IDENTIFY():
when working with loadable firmware.

ulDestld UINT32 0 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.
Set to 0, will not be changed

ulSrcld UINT32 0..2%1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process. This variable may be
used for low-level addressing purposes.

ulLen UINT32 16 EIP_OBJECT_AS_REGISTER_REQ_SIZE
- Packet data length in bytes

ulld UINT32 0..2%1 Packet Identification as unique number generated by
the Source Process of the Packet

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 O0x1A0C EIP_OBJECT_AS_REGISTER_REQ - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons

ulRout UINT32 x Routing, do not change

tData - Structure EIP_O

BJECT_AS_REG

ISTER_REQ_T

ul Instance UINT32 0x0000001... Assembly instance number
OXFFFFFFFF See Table 72: Assembly Instance Number Ranges
(except 0xCO
and 0xC1, see
description
above)
ulDPMOffset UINT32 0..5760 DPM offset of the instance data area
Note:
This offset is not the total DPM offset. It is the relative
offset within the beginning of the corresponding
input/output data images abPdOInput[5760] and
abPdOOutput[5760]
So, usually the first instance (for each data direction)
that is created will have ulDPMOffset = 0.
If multiple assembly instances are registered, make
sure that the data range of these instances does not
overlap in the DPM.
ulSize UINT32 1..504 Size of the data area for the assembly instance data.
ulFlags UINT32 Bitmap Property Flags for the assembly instance

See Table 74: Assembly Instance

Table 73: EIP_OBJECT_AS_REGISTER_REQ — Request Command for create an Assembly Instance

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

The Application Interface 71/172

The following table shows the meaning of the single bits which can be used to configured specific
assembly instance properties:

Bits Name (Bitmask) Description
31 EIP_AS_FLAG_LISTENONLY If the flag is set the instance is used as listen only connection
(0x80000000) point (heartbeat)
30 EIP_AS_FLAG_INPUTONLY If the flag is set the instance is used as input only connection
(0x40000000) point (heartbeat)
31..8 Reserved Reserved for future use
7 EIP_AS_FLAG_FIX_SIZE This flag decides whether the assembly instance allows a
(0x00000080) connection to be established with a smaller connection size
than defined in ulSize or whether only the exact match is
accepted.

If the bit is set (1), the connection size in a ForwardOpen must
directly correspond to ulSize.

If the bit is not set (0), the connection size can be smaller or
equal to ulSize.

Example:
1) ulSize = 16 (Bit 7 of ulFlags is 0)
A connection to this assembly instance can

be opened with a smaller or matching 1/0
size, e.g. 8.

2)ulSize = 6 (Bit 7 of ulFlags is 1)
A connection can only be opened with
a matching 1/0 size, i.e. 6.

6 Reserved Reserved for future use
5 EIP_AS_FLAG_CONFIG If set (1), this assembly instance is a configuration assembly
(0Xx00000020) instance, which can be used to receive configuration data upon

connection establishment.
Note:

Compared to input and output assembly instances a
configuration instance is set only once via the Forward_Open
frame. It is not exchanged cyclically.

On connection establishment the configuration data is sent to
the host application via the packet
EIP_OBJECT_CIP_OBJECT_CHANGE_IND (page 120)
addressing attribute 3 of the corresponding assembly object

instance.
4 Reserved Reserved for future use
3 EIP_AS _FLAG_RUNIDLE If set (1), the assembly instance’s real time format is modeless,

i.e. it does not contain run/idle information.
(0x00000008)

If not set (0), the assembly instance’s real time format is the 32-
Bit Run/Idle header.

0 EIP_AS_FLAG_READONLY This flag decides whether the newly registered assembly is a
(0Xx00000001) consuming or a producing assembly.

If set (1), the assembly instance is a consuming assembly
instance (can be used for the O>T direction). It is able to
consume data from the network. Data for this instance will be
mapped into the DPM Input area (data flow: network - DPM).

If cleared (0), the assembly instance is a producing assembly
instance (can be used for the T->O direction). It is able to
produce data on the network. Data for this instance will be
mapped from the DPM Output area (data flow: DPM >
network).

Table 74: Assembly Instance Property Flags

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface 72/172

Source Code Example

The following sample code shows how to fill in the parameter fields of the
EIP_OBJECT_AS_REGISTER_REQ packet in order to create two assembly instances, one input
and one output instance.

/* Fill the EIP_OBJECT_AS_REGISTER_REQ packet to create an input (T>0) assembly instance 100 that
holds 16 bytes of data, has the modeless real-time format and does not allow smaller
connection sizes. */

EIP_OBJECT _AS_PACKET REGISTER _REQ T tReq;

tReq.-tHead.ulCmd
tReq.tHead.ulLen

EIP_OBJECT _AS_REGISTER_REQ;
EIP_OBJECT _AS_REGISTER_REQ SIZE;

tReq.tData.ul Instance
tReqg.tData.ulSize
tReq.tData.ulFlags
tReq.tData.ulDPMOffset

=0 O
o

P_AS_FLAG_RUNIDLE | EIP_AS_FLAG_FIX_SIZE;

0w
oOmpE kKL

/* Fill the EIP_OBJECT_AS_REGISTER_REQ packet to create an output (O>T) assembly instance 101
that holds 8 bytes of data, has the run/idle real-time format and does allow smaller
connection sizes. */

EIP_OBJECT AS_PACKET REGISTER REQ T tReq;

tReq.tHead.ulCmd
tReq.tHead.ulLen

EIP_OBJECT AS_REGISTER_REQ;
EIP_OBJECT_AS_REGISTER_REQ SIZE;

tReqg-tData.ullnstance = 101;
tReqg.tData.ulSize = 8;
tReq.tData.ulFlags = EIP_AS_FLAG_READONLY ;

tReq.tData.ulDPMOffset = 0O;

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface

73/172

Packet Structure Reference
typedef struct EIP_OBJECT_AS_REGISTER_CNF_Ttag {

TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_HANDLE

ulSize;

ullnstance;
ulDPMOffset;

ulFlags;
hDataBuf;

3 EIP_OBJECT_AS_REGISTER_CNF_T;

#define EIP_OBJECT AS REGISTER CNF_SIZE \
sizeof(EIP_OBJECT_AS_REGISTER_CNF_T)

typedef struct EIP_OBJECT PACKET AS_REGISTER CNF_Ttag {

TLR_PACKET_HEADER_T

tHead;

} EIP_OBJECT_PACKET_AS_REGISTER_CNF_T;

Packet Description

Structure EIP_OBJECT PACKET_AS_REGISTER_CNF_T

Type: Confirmation

Variable

Type

Value / Range

Description

tHead — Structure TLR_|

PACKET_HEADER_T

ulDest UINT32 See rules in Destination Queue-Handle, unchanged
section 3.2.1
ulSrc UINT32 See rules in Source Queue-Handle, unchanged
section 3.2.1
ulDestld UINT32 See rules in Destination End Point Identifier, specifying the final
section 3.2.1 receiver of the packet within the Destination Process.
Set to O for the Initialization Packet
ulSrcld UINT32 See rules in Source End Point Identifier, specifying the origin of the
section 3.2.1 packet inside the Source Process
ulLen UINT32 20 EIP_OBJECT AS_REGISTER CNF_SIZE
- Packet data length in bytes
ulld UINT32 0..2%1 Packet Identification, unchanged
ulSta UINT32 See chapter Status/Error Codes Overview
ulCmd UINT32 O0x1A0D EIP_OBJECT_AS_REGISTER_CNF - Command
ulExt UINT32 0 Extension, reserved
ulRout UINT32 x Routing, do not change

tData - Structure EIP_O

BJECT_AS_REG

ISTER_CNF_T

ulInstance

UINT32

Instance of the Assembly Object (from the request
packet)

ulDPMOffset UINT32 Offset of the data in the dual port memory (from the
request packet)

ulSize UINT32 <=504 Size of the assembly instance data (from the request
packet)

ulFlags UINT32 Property Flags of the assembly instance
(from the request packet)

hDataBuf UINT32 Handle to the tri-state buffer of the assembly instance

Table 75: EIP_OBJECT_AS_REGISTER_CNF — Confirmation Command of register a new class object

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

The Application Interface 74/172

4.1.6 Set the Device’s Identity Information

This request packet can be used by the host application in order to configure the device’s Identity
Object Instance (CIP Class ID 0x01).

Figure 10 below displays a sequence diagram for the
EIP_OBJECT_ID_SETDEVICEINFO_REQ/CNF packet in case the host application uses the
Extended Configuration Set.

EIP_OBJECT_ID_SETDEVICEINFO_REQ/CNF (Stack Packet Set)

|
EIP_OBJECT_ID_SETDEVICEINFO_REQ |

I
|
i
: Check and apply parameters
|
I
: IP_OBJECT_ID_SETDEVICEINFO_CNF

&

Figure 10: Sequence Diagram for the EIP_OBJECT_I1D_SETDEVICEINFO_REQ/CNF Packet for the Stack Packet Set

Packet Structure Reference

#define EIP_ID_MAX_PRODUKTNAME_LEN 32
typedef struct EIP_OBJECT_ID_SETDEVICEINFO_REQ_Ttag {
TLR_UINT32 ulVendld;
TLR_UINT32 ulProductType;
TLR_UINT32 ulProductCode;
TLR_UINT32 ulMajRev;
TLR_UINT32 ulMinRev;
TLR_UINT32 ulSerialNumber;
TLR_UINT8 abProductName[EIP_I1D_MAX_PRODUKTNAME_LEN]
} EIP_OBJECT_ID_SETDEVICEINFO_REQ_T;

#define EIP_OBJECT ID_SETDEVICEINFO_REQ SIZE \
(sizeof(EIP_OBJECT ID_SETDEVICEINFO_REQ T) - \
EIP_ID_MAX_PRODUKTNAME_LEN)

typedef struct EIP_OBJECT PACKET ID_SETDEVICEINFO_REQ Ttag {
TLR_PACKET HEADER T tHead;
EIP_OBJECT_ID_SETDEVICEINFO_REQ T tData;

} EIP_OBJECT_PACKET_ID_SETDEVICEINFO_REQ T;

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface 75/172

Packet Description

Structure EIP_OBJECT_PACKET_ID_SETDEVICEINFO_REQ T Type: Request

Variable Type Value / Range Description

tHead — Structure TLR_PACKET_HEADER_T

ulDest UINT32 0x20/ Destination Queue-Handle. Set to
OBJECT_QUE

0: Destination is operating system rcX
32 (0x20): Destination is the protocol stack

ulSrc UINT32 0..2%1 Source Queue-Handle. Set to:

0: when working with loadable firmware.
Queue handle returned by TLR_QUE_IDENTIFY():
when working with loadable firmware.

ulDestld UINT32 0 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

Set to 0, will not be changed

ulSrcld UINT32 0..2%1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process. This variable may be
used for low-level addressing purposes.

ulLen UINT32 24 +n EIP_OBJECT_ID_SETDEVICEINFO_REQ_SIZE + n
- Packet data length in bytes

n is the Application data count of abProductName[] in
bytes

n=0... EIP_ID_MAX_PRODUKTNAME_LEN (32)

ulld UINT32 0..2%1 Packet Identification as unique number generated by
the Source Process of the Packet

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x1A16 EIP_OBJECT ID_SETDEVICEINFO_REQ - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons

ulRout UINT32 X Routing, do not change

tData - Structure EIP_OBJECT_ID_SETDEVICEINFO_REQ_T
ulvVendID UINT32 1..65535 Vendor identification:

This is an identification number for the manufacturer of
an EtherNet/IP device.

Vendor IDs are managed by ODVA (see
www.odva.org).

Default value: 283 (Hilscher)

The value 0 is not a valid Vendor ID. However, when

using value 0 here, the stack automatically chooses the
default Vendor ID (283 - Hilscher GmbH).

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

http://www.odva.org/

The Application Interface

76/172

Structure EIP_OBJECT_PACKET_ID_SETDEVICEINFO_REQ T

Type: Request

ulProductType

UINT32

0..65535

CIP Device Type (former “Product Type”)

The list of device types is managed by ODVA (see
www.odva.org). It is used to identify the device profile
that a particular product is using. Device profiles define
minimum requirements a device must implement as well
as common options.

Publicly defined: 0x00 - 0x64
Vendor specific: 0x64 - 0xC7
Reserved by CIP: 0xC8 - OxFF
Publicly defined: 0x100 - Ox2FF
Vendor specific: 0x300 - Ox4FF
Reserved by CIP: 0x500 - OxFFFF

Default: 0xOC (Communication Device)

The value 0 is not a valid Product Type. However, when
using value 0 here, the stack automatically chooses the
default Product Type (0x0C).

ulProductCode

UINT32

1..65535

Product code

The vendor assigned Product Code identifies a
particular product within a device type. Each vendor
assigns this code to each of its products. The Product
Code typically maps to one or more catalog/model
numbers. Products shall have different codes if their
configuration and/or runtime options are different. Such
devices present a different logical view to the network.
On the other hand for example, two products that are
the same except for their color or mounting feet are the
same logically and may share the same product code.
The value zero is not valid.

The value 0 is not a valid Product Code. However,
when using value 0 here, the stack automatically
chooses the default Product Code dependent on the
chip type (netX50/100 etc.) that is used.

ulMajRev

UINT32

1..127

Major revision

ulMinRev

UINT32

1..255

Minor revision

ulSerialNumber

UINT32

0... OXFFFFFFFF

Serial Number of the device

This parameter is a number used in conjunction with the
Vendor ID to form a unique identifier for each device on
any CIP network. Each vendor is responsible for
guaranteeing the uniqueness of the serial number
across all of its devices.

Usually, this number will be set automatically by the
firmware, if a security memory is available. In this case
leave this parameter at value O.

abProductName[32]

UINTS]]

Product Name

This text string should represent a short description of
the product/product family represented by the product
code. The same product code may have a variety of
product name strings.

Byte 0 indicates the length of the name. Bytes 1 -30
contain the characters of the device name)

Example: “Test Name”
abDeviceName[0] = 9
abDeviceName[1l..9] = “Test Name”

Table 76: EIP_OBJECT_ID_SETDEVICEINFO_REQ — Request Command for open a hew connection

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

http://www.odva.org/

The Application Interface 771172

Source Code Example

#define MY_VENDOR_ID 283
#define PRODUCT_COMMUNICATION_ADAPTER 12

void APS_SetDevicelnfo_req(EIP_APS_RSC_T FAR* ptRsc)
EIP_APS_PACKET_T* ptPck;
iT(TLR_POOL_PACKET_GET(ptRsc->tLoc.hPool,&ptPck) == TLR_S_OK) {
ptPckt->tDevicelnfoReq.tHead.ulCmd
ptPckt->tDevicelnfoReq.tHead.ulSrc
ptPckt->tDevicelnfoReq.tHead.ulSta

ptPckt->tDevicelnfoReq.-tHead.ulld
ptPckt->tDevicelnfoReq.tHead.ulLen

EIP_OBJECT_ID_SETDEVICEINFO_REQ;
(UINT32)ptRsc->tLoc.hQue;

0;

ulldx;
EIP_OBJECT_ID_SETDEVICEINFO_REQ SIZE;

ptPckt->tDevicelnfoReq.tData.ulVendld = MY_VENDOR_ID;
ptPckt->tDevicelnfoReq.-tData.ulProductType = PRODUCT_COMMUNICATION_ADAPTER;
ptPckt->tDevicelnfoReq.-tData.ulProductCode = 1;
ptPckt->tDevicelnfoReq.tData.ulMajRev = 1;
ptPckt->tDevicelnfoReq.tData.ulSerialNumber = 1;
ptPckt->tDevicelnfoReq.tData.abProductName[0] =15;
TLR_MEMCPY (&ptPckt->tDevicelnfoReq.tData.abProductName[1], “Scanner Example”,
ptPckt->tDevicelnfoReq.-tData.abProductName[0]);

TLR_QUE_SENDPACKET_FIFO((TLR_HANDLE)ptRsc->tRem.hQueEipObject, ptPck,
TLR_INFINITE) ;

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface 78/172

Packet Structure Reference

typedef struct EIP_OBJECT_ID_SETDEVICEINFO_CNF_Ttag {
TLR_PACKET HEADER T tHead;
} EIP_OBJECT_PACKET_ID_SETDEVICEINFO_CNF_T;

Packet Description

Structure EIP_OBJECT_PACKET_ID_SETDEVICEINFO_CNF_T Type: Confirmation
Variable Type Value / Range Description
tHead — Structure TLR_PACKET_HEADER_T
ulDest UINT32 See rulesin Destination Queue Handle
section 3.2.1
ulSrc UINT32 See rules in Source Queue Handle
section 3.2.1
ulDestld UINT32 See rulesin Destination End Point Identifier, specifying the final
section 3.2.1 receiver of the packet within the Destination Process.
ulSrcld UINT32 See rulesin Source End Point Identifier, specifying the origin of the
section 3.2.1 packet inside the Source Process
ulLen UINT32 0 Packet data length in bytes
ulld UINT32 0..2%1 Packet Identification, unchanged
ulSta UINT32 See chapter Status/Error Codes Overview
ulCmd UINT32 Ox1A17 EIP_OBJECT_ID_SETDEVICEINFO_CNF — Command
ulExt UINT32 0 Extension, reserved
ulRout UINT32 X Routing, do not change

Table 77: EIP_OBJECT_ID_SETDEVICEINFO_CNF — Confirmation Command of setting device information

Source Code Example
void APS_SetDevicelnfo_cnf(EIP_APS_RSC_T FAR* ptRsc, EIP_APS_PACKET_T* ptPck)

iT(ptPck->tDevicelnfoCnf.tHead.ulSta = TLR_S_OK){
APS_ErrorHandling(ptRsc);

b
TLR_POOL_PACKET_RELEASE(ptRsc->tLoc.hPool, ptPck);

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface 79/172

4.1.7 Register Service

This packet can be used if the device shall support services that are not directly bound to a CIP
object. Usually, services use the CIP addressing format Class—>Instance—>Atttribute. But if for
example TAGs (access data within the device by using strings instead of the normal CIP
addressing) shall be supported, no specific object can be addressed.

Therefore, the host application can register a vendor specific service code (see Table 102). If the
device then receives this service (sent from a Scanner of Tool) it will be forwarded to the host
application via the indication EIP_OBJECT CL3_ SERVICE_IND (section 4.2.3). Again, the
indication is only sent if the service does not address an object directly.

Figure 11 below displays a sequence diagram for the
EIP_OBJECT_REGISTER_SERVICE_REQ/CNF packet in case the host application uses the
Extended or Stack Packet Set

EIP_OBJECT REGISTER_SERVICE_REQ/CNF (Stack Packet Set)

EIP_OBJECT_REGISTER_SERVICE_REQ |

i
I
:
: Check and apply parameters
l
I
i
I

 EIP_OBJECT REGISTER _SERVICE_CNF

i}
'

Figure 11: Sequence Diagram for the EIP_OBJECT_REGISTER_SERVICE_REQ/CNF Packet for the Stack Packet Set

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface

80/172

Packet Structure Reference

/* EIP_OBJECT_REGISTER_SERVICE_REQ */
struct EIP_OBJECT REGISTER_SERVICE_REQ Ttag

TLR_UINT32 ulService;

¥

/* Service Code */

/* command for register a new object to the message router */

struct EIP_OBJECT PACKET REGISTER_SERVICE_REQ Ttag
{

TLR_PACKET_HEADER_T

}:

Packet Description

tHead;

EIP_OBJECT REGISTER_SERVICE REQ T tData;

Structure EIP_OBJECT_PACKET_REGISTER_SERVICE_REQ_T Type: Request

Variable Type Value / Range Description

tHead — Structure TLR_PACKET_HEADER_T

ulDest UINT32 OBJECT_QUE Destination Queue-Handle. Set to
0: Destination is operating system rcX
32 (0x20): Destination is the protocol stack

ulSrc UINT32 0..2%1 Source Queue-Handle. Set to:
0: when working with loadable firmware.
Queue handle returned by TLR_QUE_IDENTIFY():
when working with loadable firmware.

ulDestld UINT32 0 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.
Set to 0, will not be changed

ulSrcld UINT32 0..2%1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process. This variable may be
used for low-level addressing purposes.

ulLen UINT32 4 Packet Data Length (In Bytes)

ulld UINT32 0..2%1 Packet Identification As Unique Number

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x00001A44 EIP_OBJECT_REGISTER_SERVICE_REQ - Command /
Response

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

tData - structure EIP_OBJECT_REGISTER_SERVICE_REQ T

ulService

UINT32

Vendor specific service code (see Table 102)

Table 78: EIP_OBJECT_READY_REQ - Register Service

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface 81/172
Packet Structure Reference
struct EIP_OBJECT PACKET_REGISTER_SERVICE_CNF_Ttag
TLR_PACKET_HEADER_T tHead;
}:
Packet Description
Structure EIP_OBJECT_PACKET_REGISTER_SERVICE_CNF_T Type: Confirmation

Variable

Type

Value / Range

Description

tHead — Structure TLR_|

PACKET_HEADER_T

ulDest UINT32 See rulesin Destination Queue Handle
section 3.2.1

ulSrc UINT32 See rulesin Source Queue Handle
section 3.2.1

ulDestld UINT32 See rulesin Destination End Point Identifier, specifying the final
section 3.2.1 receiver of the packet within the Destination Process.

ulSrcid UINT32 See rules in Source End Point Identifier, specifying the origin of the
section 3.2.1 packet inside the Source Process

ulLen UINT32 0 Packet Data Length (In Bytes)

ulld UINT32 0..2%1 Packet Identification as unique Number

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x00001A45 EIP_OBJECT_REGISTER_SERVICE_CNF - Command /

Response
ulExt UINT32 Reserved
ulRout UINT32 Routing Information

Table 79: EIP_OBJECT_READY_CNF — Confirmation Command for Register Service Request

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface 82/172

4.1.8 Set Parameter

This packet can be used to activate special options and behavior of the protocol stack.

Table 80 gives an overview of all possible parameters:

Parameter Flags — ulParameterFlags

Bit | Description
0 EIP_OBJECT_PRM_FWRD_OPEN_CLOSE_FORWARDING
Enables forwarding of Forward_Open and Forward_Close frames to the user application task.

Forward_Open frames:

If set (1), all Forward_Open frames will be forwarded to the host application via the packet
EIP_OBJECT_LFWD_OPEN_FWD_IND.

If not set (0), the Forward_Open will not be forwarded.

Forward_Close frames:

If set (1), all Forward_Close frames will be forwarded via the packet EIP_OBJECT_FWD_CLOSE_FWD_IND.
If not set (0), the Forward_Open/Close will not be forwarded.

8-31 | Reserved

Must be setto 0

Table 80: EIP_OBJECT_SET_PARAMETER_REQ — Packet Status/Error

Packet Structure Reference
#define EIP_OBJECT PRM_FWRD_OPEN_CLOSE_FORWARDING 0x00000001

typedef struct EIP_OBJECT_SET_PARAMETER_REQ Ttag

TLR_UINT32 ulParameterFlags;
} EIP_OBJECT_SET_PARAMETER_REQ T;

#define EIP_OBJECT SET PARAMETER_REQ_SIZE
sizeof(EIP_OBJECT_SET_PARAMETER_REQ_T)

typedef struct EIP_OBJECT PACKET SET_PARAMETER_REQ Ttag
TLR_PACKET_HEADER_T tHead;

EIP_OBJECT SET_PARAMETER REQ T tData;
JEIP_OBJECT PACKET_SET_PARAMETER_REQ T;

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface

83/172

Packet Description

Structure EIP_OBJECT_PACKET_SET_PARAMETER_REQ_T Type: Request

Variable

Type

Value / Range

Description

tHead — Structure TLR_|

PACKET_HEADER_T

ulDest UINT32 0x20/ Destination Queue Handle
DPMINTF_QUE
ulSrc UINT32 0..2%1 Source Queue Handle
ulDestld UINT32 See rules in Destination End Point Identifier, specifying the final
section 3.2.1 receiver of the packet within the Destination Process.
Set to O for the Initialization Packet
ulSrcid UINT32 See rules in Source End Point Identifier, specifying the origin of the
section 3.2.1 packet inside the Source Process
ulLen UINT32 4 EIP_OBJECT_SET_PARAMETER_REQ_SIZE
Packet Data Length (In Bytes)
ulld UINT32 0. 2%%1 Packet Identification As Unique Number
ulSta UINT32 See chapter Status/Error Codes Overview
ulCmd UINT32 0x00001AF2 EIP_OBJECT_SET_PARAMETER_REQ — Command
ulExt UINT32 Reserved
ulRout UINT32 Routing Information

tData - structure EIP_OB

JECT_SET_PARAMETER_REQ_T

ulParameterFlags

UINT32

See Table 80: EIP_OBJECT_SET_PARAMETER_REQ
— Packet Status/Error

Table 81: EIP_OBJECT_SET_PARAMETER_REQ — Set Parameter Request Packet

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface

84/172

Packet Structure Reference

typedef struct EIP_OBJECT PACKET SET_PARAMETER_CNF_Ttag

TLR_PACKET_HEADER_T tHead;
3 EIP_OBJECT_PACKET_SET_PARAMETER_CNF_T;

#define EIP_OBJECT SET PARAMETER CNF_SIZE O

Packet Description

Structure EIP OBJECT_PACKET_SET_PARAMETER_CNF_T

Type: Confirmation

Variable Type Value / Range Description

tHead — Structure TLR_PACKET_HEADER_T

ulDest UINT32 See rules in Destination Queue Handle
section 3.2.1

ulSrc UINT32 See rules in Source Queue Handle
section 3.2.1

ulDestld UINT32 See rules in Destination End Point Identifier, specifying the final
section 3.2.1 receiver of the packet within the Destination Process.

ulSrcld UINT32 See rules in Source End Point Identifier, specifying the origin of the
section 3.2.1 packet inside the Source Process

ulLen UINT32 0 Packet Data Length (In Bytes)

ulld UINT32 Packet Identification As Unique Number

ulSta UINT32 See Status/Error Codes Overview

ulCmd UINT32 Ox00001AF3 EIP_OBJECT_SET_PARAMETER_CNF— Command

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

Table 82: EIP_OBJECT_SET_PARAMETER_CNF — Set Parameter Confirmation Packet

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

The Application Interface 85/172

4.1.9 CIP Service Request

This packet can be used to access a CIP object within the EtherNet/IP Stack.

The service to be performed is selected by setting the parameter ulService of the request
packet.

What attributes of an object can be accessed and what services are available for the objects
please see section 2 "Available CIP Classes in the Hilscher EtherNet/IP Stack”.

The class and the instance of the object to be accessed are selected by the variables ulClass
and ul Instance of the request packet. In case the requested service will affect an attribute (e.g.
services Get_Attribute_Single and Set_Attribute_Single), this attribute is selected by
variable ulAttribute of the request packet. Set ulAttribute to 0 when selection of an
attribute is not necessary.

If data need to be sent along with the service, this can be achieved by using the array abData[].
The length of data in abData[] must then be added to the ulLen field of the packet header.

The result of the service is delivered in the fields ulGRC (Generic Error Code) and ulERC
(Additional Error Code) of the confirmation packet (see Table 83).

If there is data received along with the confirmation this can be found in the array abData[].The
ullLen field of the packet header then shows how many bytes are valid within the array.

In case of successful execution, the variables ulGRC and ulERC of the confirmation packet will
have the value O.

Usually, in case of an error only the Generic Error Code of the confirmation packet is unequal to O.
Table 83 shows possible GRC values and their meaning.

ulGRC
ulGRC Signification
0 No error
2 Resources unavailable
8 Service not available
9 Invalid attribute value
11 Already in request mode
12 Object state conflict
14 Attribute not settable
15 A permission check failed
16 State conflict, device state prohibits the command execution
19 Not enough data received
20 Attribute not supported
21 Too much data received
22 Object does not exist
23 Reply data too large, internal buffer to small

Table 83: Generic Error (Variable ul GRC)

However, if an error concerning the connection manager occurs, the following ERC values might
be used:

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface 86/172

ulERC
ulERC Signification
0 No error
0x100 Connection already in use
0x103 Transport type not supported
0x106 Multiple configuration attempts
0x107 Trying to close inactive connection
0x108 Unsupported connection type
0x109 Connection size mismatch
0x110 Connection unconfigured
0x111 Unsupportable RPI
0x113 Conn Mgr out of connections
0x114 Mismatch in electronic key
0x115 Mismatch in electronic key
0x116 Mismatch in electronic key
0x117 Nonexistent instance number
0x118 Bad config instance number
0x119 No controlling connection open
Ox11A Application out of connections
0x11C The transport class requested in the Transport Type/Trigger parameter is not supported.
0x11D The production trigger requested in the Transport Type/Trigger parameter is not supported.
Ox11E The direction requested in the Transport Type/Trigger parameter is not supported.
This extended status code shall be returned as the result of specifying an O2T fixed /
0x11F - .
variable flag that is not supported.
This extended status code shall be returned as the result of specifying a T20 fixed / variable
0x120 .
flag that is not supported.
ox121 This extended status code shall be returned as the result of specifying an O2T priority code
that is not supported.
This extended status code shall be returned as the result of specifying a T20 priority code
0x122 .
that is not supported. */
This extended status code shall be returned as the result of specifying an O2T connection
0x123 .
type that is not supported
This extended status code shall be returned as the result of specifying a T20 connection
0x124 .
type that is not supported
This extended status code shall be returned as the result of specifying an O2T Redundant
0x125 .
Owner flag that is not supported
This extended status code is returned when the target device determines that the data
0x126 segment provided in the Connection_Path parameter did not contain an acceptable number
of 16-hit words for the configuration application path requested.
This extended status code is returned by the target when the size of the consuming object
0x127 declared in the Forward_Open request and available on the target does not match the size
declared in the O->T Network Connection Parameter. */
This extended status code is returned by the target when the size of the producing object
0x128 declared in the Forward Open request and available on the target does not match the size
declared in the T->O Network Connection Parameter.
The configuration application path specified in the connection path does not correspond to a
valid configuration application path within the target application. This error could also be
0x129 . . . L ; : ;
returned if a configuration application path was required, but not provided by a connection
request
Ox12A The consumed application path specified in the connection path does not correspond to a

valid consumed application path within the target application. This error could also be

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface

87/172

ulERC Signification
returned if a consumed application path was required, but not provided by a connection
request */
The produced application path specified in the connection path does not correspond to a
valid produced application path within the target application. This error could also be

0x12B . o ; . ;
returned if a produced application path was required, but not provided by a connection
request.

Ox12C Configuration Symbol does not exist. The originator attempts to connect to a configuration
tag name, but the name is not on the list of tags defined on the target. */

0x12D Consuming Symbol does not exist. The originator attempts to connect to a consuming tag
name, but the name is not on the list of tags defined on the target. */

OX12E Producing Symbol does not exist. The originator attempts to connect to a producing tag
name, but the name is not on the list of tags defined on the target. */
The combination of configuration and/or consume and/or produce application paths specified

0x12F .) . ; X
in the connection path are inconsistent with each other.
Information in the data segment is not consistent with the format of the consumed data. For

0x130 example the configuration data specifies float configuration data while the consumed path
specifies integer data.
Information in the data segment is not consistent with the format of the produced data. For

0x131 example the configuration data specifies float configuration data while the produced path
specifies integer data. */

0x203 Using a timed out connection

0x204 Unconnected Send timed out

0x205 Unconnected Send param. error

0x301 No buffer memory available

0x302 Insufficient bandwidth left

0x303 Out of gen screeners

0x304 Not configured to send RT data

0x305 sig does not match sig store in CCM

0x306 ccm is not responding to req

0x311 Nonexistent port

0x312 Invalid link address in path

0x315 Invalid segment in path

0x316 Path & conn not equal in close

0x317 Net seg not present or bad

0x318 Link address to self invalid

0x319 Resources in secondary unavail

0x31D Redundant connection mismatch

0x813 A multicast connection has been requested between a producer and a consumer that are on
different subnets, and the producer is not configured for off-subnet multicast.

Table 84: Extended error codes for the connection manager

Figure 12 below displays a sequence diagram for the EIP_OBJECT _CIP_SERVICE REQ/CNF
packet: in case the host application uses the Basic, Extended or Stack Packet Set (see 3.2

“Configuration Using the Packet API").

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

The Application Interface 88/172

EIP_OBJECT_CIP_SERVICE_REQ/CNF (Stack Packet Set)

EIP_OBJECT CIP_SERVICE REQ '

Process service

EIP_OBJECT CIP_SERVICE_CNF

il
-

Figure 12: Sequence Diagram for the EIP_OBJECT_CIP_SERVICE_REQ/CNF Packet for the Stack Packet Set

Packet Structure Reference
#define EIP_OBJECT_MAX PACKET_LEN 1520 /*1< Maximum packet length */

typedef struct EIP_OBJECT_CIP_SERVICE_REQ Ttag

TLR_UINT32 ulService; /*1< CIP service code */
TLR_UINT32 ulClass; /*1< CIP class ID */
TLR_UINT32 ulInstance; /*1< CIP instance number */
TLR_UINT32 ulAttribute; /*1< CIP attribute number */
TLR_UINT8 abData[EIP_OBJECT_MAX_ PACKET_LEN]; /*I< CIP Service Data.

} EIP_OBJECT_CIP_SERVICE_REQ T;

typedef struct EIP_OBJECT_PACKET_CIP_SERVICE_REQ Ttag
TLR_PACKET_HEADER_T tHead;
EIP_OBJECT_CIP_SERVICE_REQ T tData;

} EIP_OBJECT_PACKET_CIP_SERVICE_REQ T;

#define EIP_OBJECT CIP_SERVICE_REQ SIZE (sizeof(EIP_OBJECT CIP_SERVICE_REQ T) -
EIP_OBJECT_MAX_PACKET_LEN)

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface

89/172

Packet Description

Structure EIP_OBJECT _PACKET_CIP_SERVICE_REQ T

Type: Request

Variable Type

Value / Range

Description

tHead - Structure TLR_PACKET_HEADER_T

ulDest UINT32 |0x20/ Destination Queue-Handle. Set to
OBJECT_QUE 0: Destination is operating system rcX

32 (0x20): Destination is the protocol stack

ulSrc UINT32 |0..2%%1 Source Queue-Handle. Set to:
0: when working with loadable firmware.
Queue handle returned by TLR_QUE_IDENTIFY (): when working
with loadable firmware.

ulDestld UINT32 |0 Destination End Point Identifier, specifying the final receiver of the
packet within the Destination Process. Set to 0 for the Initialization
Packet

ulSrcld UINT32 |0..2%%1 Source End Point Identifier, specifying the origin of the packet inside
the Source Process

ulLen UINT32 |16+n Packet Data Length in bytes
n = Length of service data in bytes (see field abData[])

ulld UINT32 |0..2%%1 Packet Identification as unique number generated by the Source
Process of the Packet

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 | Ox1AF8 EIP_OBJECT_CIP_SERVICE_REQ - Command

ulExt UINT32 |0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 |x Routing, do not touch

tData - Structure EIP_OBJECT_CIP_SERVICE_REQ T

ulService UINT32 |[1-31 CIP Service Code
ulClass UINT32 | Valid Class ID CIP Class ID (according to “The CIP Networks Library, Volume 1
Common Industrial Protocol Specification Chapter 5, Table 5-1.1")
For available object classes see section 2 “Available CIP Classes in
the Hilscher EtherNet/IP Stack” on page 12.
ullnstance UINT32 | Valid Instance CIP Object Instance number.
number For available object classes and instances see section 2 “Available
CIP Classes in the Hilscher EtherNet/IP Stack” on page 12.
ulAttribute UINT32 | Valid Attribute CIP Attribute number (required for get/set attribute only, otherwise
number set it to 0)).
For available object classes and attributes see section 2 “Available
CIP Classes in the Hilscher EtherNet/IP Stack” on page 12.
abData[1520] UINT8[] | 0-1520 CIP Service data

Number of bytes n provided in this field must be added to the packet
header length field ullLen.

Set the proper packet length as follows:
ptReg->tHead.ullLen =
EIP_OBJECT_CIP_SERVICE_REQ_SIZE + n

Table 85: EIP_OBJECT_CIP_SERVICE_REQ — CIP Service Request

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

The Application Interface 90/172

Packet Structure Reference
#define EIP_OBJECT_MAX_ PACKET_LEN 1520 /*1< Maximum packet length */

typedef struct EIP_OBJECT CIP_SERVICE_CNF_Ttag

TLR_UINT32 ulService; /*1< CIP service code */
TLR_UINT32 ulClass; /*1< CIP class 1D */
TLR_UINT32 ul Instance; /*1< CIP instance number */
TLR_UINT32 ulAttribute; /*1< CIP attribute number */
TLR_UINT32 ulGRC; /*1< Generic Error Code */
TLR_UINT32 ulERC; /*1< Extended Error Code */
TLR_UINT8 abData[EIP_OBJECT_MAX_PACKET_LEN]; /*I< CIP service data.

} EIP:OBJECT_CIP_SERVICE_CNF_T;

typedef struct EIP_OBJECT PACKET CIP_SERVICE_CNF_Ttag

TLR_PACKET HEADER_T tHead;
EIP_OBJECT CIP_SERVICE_CNF. T tData;
3 EIP_OBJECT_PACKET_CIP_SERVICE_CNF_T;

#define EIP_OBJECT CIP_SERVICE_CNF_SIZE (sizeof(EIP_OBJECT CIP_SERVICE_CNF_T)) -
EIP_OBJECT MAX_PACKET_LEN

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface

91/172

Packet Description

Structure EIP_OBJECT _PACKET_CIP_SERVICE_CNF_T

Type: Confirmation

Variable

Type

Value / Range

Description

tHead - Structure

TLR_PACKET_HEADER_T

ulDest UINT32 | See rules in Destination Queue Handle
section 3.2.1
ulSrc UINT32 | See rules in Source Queue Handle
section 3.2.1
ulDestld UINT32 |0 Destination End Point Identifier
ulSrcld UINT32 |x Source End Point Identifier
ulLen UINT32 | 24+n Packet Data Length in bytes
n = Length of service data in bytes
ulld UINT32 |0..2%1 Packet Identification as unique number generated by the Source
Process of the Packet
ulSta UINT32 See chapter Status/Error Codes Overview
ulCmd UINT32 | Ox1AF9 EIP_OBJECT_CIP_SERVICE_CNF - Command
ulExt UINT32 |0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 | x Routing, do not touch

tData - Structure EIP_OBJECT_CIP_SERVICE_CNF_T

ulService UINT32 |1-31 CIP Service Code
ulClass UINT32 | Valid Class ID | CIP Class ID (according to “The CIP Networks Library, Volume 1
Common Industrial Protocol Specification Chapter 5, Table 5-1.1"
ullnstance UINT32 | Valid Instance | CIP Instance number
number
ulAttribute UINT32 | Valid Attribute | CIP Attribute number (for get/set attribute only)
number
ulGRC UINT32 Generic error code. (according to “The CIP Networks Library, Volume
1 Common Industrial Protocol Specification Chapter 5, Appendix B-1.
Volume 1) (see also Table 83)
ulERC UINT32 Additional error code.
abData[1520] UINTS[] CIP Service data

Number of bytes provided in this field must be calculated using the
packet header length field ulLen.

Proceed as follows to get the data size:

number of bytes provided in abData =
tHead.ulLen - EIP_OBJECT_CIP_SERVICE_REQ_ SIZE

Table 86: EIP_OBJECT_CIP_SERVICE_CNF — Confirmation to CIP Service Request

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

The Application Interface 92/172

4.1.10 Set Watchdog Time

This packet is used to set the watchdog time.

For more details see reference [1]

4.1.11 Register Application

This packet is used to register an application at the stack to receive indications.
For more details see reference [1]

4.1.12 Start/Stop Communication

This packet is used to start or stop the communication. It has the same behavior as set bus on/off.

For more details see reference [1]

4.1.13 Channel Init

This packet is used to perform a channel init.

For more details see reference [1]

4.1.14 Modify Firmware Parameter

This packet is used to modify configurations parameter. The EtherNet/IP Adapter stack supports
the following parameters to modify:

ParameterlD Data
Name Type Description
PID_EIP_IP_CONFIGURATION | ullP UINT32 | IP address
(ex3000A001) ulNetmask UINT32 | Network mask
ulGateway UINT32 | Gateway address

PID_EIP_IP_CONFIGCONTROL | ulConFfiguration | UINT32 | PRM_CFGCTRL_STORED_CFG
Control PRM_CFGCTRL_DHCP
PRM_CFGCTRL_BOOTP
PRM_CFGCTRL_FIXIP

(0x3000A002)

w N R o

Table 87 RCX_SET_FW_PARAMETER_REQ ParameterID

For more details see reference [1]

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface

93/172

4.2 Acyclic events indicated by the stack

This chapter explains the events indicated by the stack. Depending on the configuration the stack

sends the following indications:

Overview over the indications of the EtherNet/IP Adapter
No. of Packet Command Page
section code
(REQ/CNF or
IND/RES)
4.2.1 EIP_OBJECT_RESET_IND 0x00001A24 | 94
4.2.2 EIP_OBJECT_CONNECTION_IND Ox00001A2E | 98
4.2.3 EIP_OBJECT_CL3_SERVICE_IND 0x00001A3E | 107
4.2.4 EIP_OBJECT_CIP_OBJECT_CHANGE_IND O0x00001AFA | 120
425 RCX_LINK_STATUS_CHANGE_IND 0xO00002F8A | 123

Table 88: Overview over the indications of the EtherNet/IP Adapter

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

The Application Interface 94/172

4.2.1 Indication of a Reset Request from the network

This indication notifies the host application about a reset service request from the network. This
means an EtherNet/IP device (could also be a Tool) just sent a reset service (CIP service code
0x05) to the device and waits for a response.

It is important to send the reset response packet right away, since this triggers the response to the
reset service on the network. So, in case the response to the indication is not sent at all, the
requesting node on the network will not get any answer to its reset request.

There are two reset types defined (0 and 1) that tell the host application how the reset shall be
performed. Basically, the difference between these is the way the configuration data is handled.
Reset type 0 (the default reset type that every EtherNet/IP device needs to support) only emulates
a power cycle, where all configuration data (such as the IP settings) will be kept. Reset type 1 on
the other side shall bring the device back to the factory defaults.

Value Meaning as defined in the CIP Specification, Volume 1

0 Reset shall be done emulating power cycling of the device.

1 Return as closely as possible to the factory default configuration. Reset is then done emulating power
cycling of the device.

2 This type of reset is not supported, since it is not yet specified for EtherNet/IP devices.

3-99 Reserved by CIP

100 - 199 | Vendor-specific
200 - 255 | Reserved by CIP
Table 89: Allowed Values of ulResetTyp

With the EIP_OBJECT_RESET_RES packet the request can be accepted (ulSta == TLR_S_OK).or
denied (ulSta !'= TLR_S OK). If the reset request is accepted the stack will automatic start reset
procedure.

Figure 13 below displays a sequence diagram for the EIP_OBJECT_RESET_IND/RES packet with
reset type 0 and 1. For all available Packet Sets (Basic, Extended or Stack Packet Set - see 3.2
“Configuration Using the Packet API”) it is illustrated what the host application needs to do when
receiving the reset indication.

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface

95/172

EIP_OBJECT_RESET_IND/RES - Reset Type 0 and 1 (Basic Packet Set)

EIP_OBJECT_RESET_IND

Example:

senvice 0x05 (reset),

class:0x01 (ldentity Chject),
instance:0x01,

data: 0x00, or Ox01 (reset type 0 or 1)

Reset senvice to Identity Chject (class 1D 0x01)

Route EIP_OBJECT RESET IND

[}
EIP_OBJECT_RESET_RES |

lRuute EIP_OBJECT_RESET_RES

I
I
i
Application specific reset procedures (if necessary) i
|
I
I

Here starts the re-configuration process.
So the same packets need to be sent as on the initial startup.

Important:

If Reset Type 0 is received
All configuration parameters that are currently
stored need to be applied. They might have been changed previously
(see section "Handling of Configuration Data Changes").

If Reset Type 1 is received
The factory default configuration parameters
need to be applied.

ISend reset response

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-
L
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 13: Sequence Diagram for the EIP_OBJECT_RESET__IND/RES Packet for the Basic Packet Set

Packet Structure Reference
struct EIP_OBJECT RESET IND_Ttag

TLR_UINT32 ulDataldx;
TLR_UINT32 ulResetTyp;

}:

struct EIP_OBJECT PACKET RESET IND_Ttag

TLR_PACKET_HEADER_T tHead;

¥

EIP_OBJECT RESET_IND_T Data;

/*1< Index of the service */
/*1< Type of the reset */

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

The Application Interface

96/172

Packet Description

Structure EIP_OBJECT PACKET RESET_IND_T

Type: Indication

Variable

Type

Value / Range

Description

tHead — Structure TLR_|

PACKET_HEADER_T

ulDest UINT32 Destination Queue-Handle. Set to
0: Destination is operating system rcX
32 (0x20): Destination is the protocol stack

ulSrc UINT32 Source Queue-Handle. Set to:
0: when working with loadable firmware.
Queue handle returned by TLR_QUE_IDENTIFY():
when working with loadable firmware.

ulDestld UINT32 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.
Set to 0, will not be changed

ulSrcld UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process. This variable may be
used for low-level addressing purposes.

ullLen UINT32 8 Packet Data Length (In Bytes)

ulld UINT32 0..2%1 Packet Identification As Unique Number

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x00001A24 EIP_OBJECT_RESET_IND - Command / Response

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

tData - structure EIP_OBJECT_RESET_IND_T

ulDataldx UINT32 Index of the service (host application does not need to
evaluate this parameter)

ulResetTyp UINT32 0..1, 100-199 Type of the reset

0: Reset is done emulating power cycling of the
device(default)

1: Return as closely as possible to the factory default
configuration. Reset is then done emulating power
cycling of the device.

100-199: Vendor specific

Table 90: EIP_OBJECT_RESET_IND — Reset Request from Bus Indication

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

The Application Interface 97/172

Packet Structure Reference
typedef struct EIP_OBJECT_PACKET_CONNECTION_RES_Ttag
{

TLR_PACKET_HEADER_T tHead;
3 EIP_OBJECT_PACKET_CONNECTION_RES_T;

Packet Description

Structure EIP_OBJECT_PACKET_RESET_RES T Type: Response

Variable Type Value / Range Description

tHead — Structure TLR_PACKET _HEADER_T

ulDest UINT32 See rules in Destination Queue Handle
section 3.2.1

ulSrc UINT32 See rules in Source Queue Handle
section 3.2.1

ulDestld UINT32 See rules in Destination End Point Identifier, specifying the final
section 3.2.1 receiver of the packet within the Destination Process.

ulSrclid UINT32 See rules in Source End Point Identifier, specifying the origin of the
section 3.2.1 packet inside the Source Process

ulLen UINT32 0 Packet Data Length (In Bytes)

ulld UINT32 0..2%1 Packet Identification As Unique Number

ulsta UINT32 TLR_S_OK, See chapter Status/Error Codes Overview
TLR_E_FAIL TLR_S_OK - reset is accepted

TLR_E_FAIL — reset is denied

ulCmd UINT32 0x00001A25 EIP_OBJECT_RESET_RES — Response

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

Table 91: EIP_OBJECT_RESET_RES — Response to Indication to Reset Request

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

The Application Interface 98/172

4.2.2 Connection State Change Indication

This indication will be sent to the application task every time a connection is established, closed or
has timed out. This applies only to Exclusive Owner, Input Only and Listen Only connections.

Connection State - ulConnectionState

The variable ulConnectionState indicates whether a connection has been established or
closed.

ulConnectionState = Numeric | Meaning
Value
EI1P_UNCONNECT 0 Connection was closed.
If connection timed out, the value of ulExtendedState will be 1,
otherwise 0.
EI1P_CONNECTED 1 Connection has been established

Table 92: Meaning of variable ulConnectionState

Number of Exclusive Owner Connections — usNumgExclusiveowner

Number of existing implicit exclusive owner connections.
Number of Input Only Connections — usNumInputOnly
Number of existing implicit input only connections.
Number of Listen Only Connections — usNumListenOnly

Number of existing implicit listen only connections.

Number of Explicit Messaging Connections — usNumExplicitMessaging

Number of existing explicit connections.

Connection Type - bConnType

The variable bConnType contains information about the connection type that was changed:

bConnType = Numeric | Meaning

Value
EIP_CONN_TYPE_CLASS 0_1 EXCLUSIVE_OWNER |1 Implicit exclusive owner connection
Reserved 2 Reserved for future use
EIP_CONN_TYPE_CLASS O_1 LISTEN_ONLY 3 Implicit listen only connection
EIP_CONN_TYPE_CLASS_0O_1_ INPUT_ONLY 4 Implicit input only connection
EIP_CONN_TYPE_CLASS_3 5 Explicit connection

Table 93: Meaning of variable bConnType
Class to which the connection was directed - ulClass

For implicit connections (class0/1, Exclusive Owner, Input Only) the ulClass field is normally
0x04, which is the assembly object class ID.

For explicit connections the ulClass field is 0x02, which is the Message Router object class ID.

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface 99/172

Instance of the connection path - ullnstance

For implicit connections it is the configuration connection point.
For explicit connections ul Instance is always 1.

Input connection point - ulOTConnPoints

Provides the connection point (assembly instance) in O—>T direction.

Output connection point —ulTOConnPoints

Provides the connection point (assembly instance) in T->O direction.

Connection Serial Number — usConnSerialNum

Provides the originator serial number for this connection. This must be a unique 16-bit value. For
more details, see “The CIP Networks Library, Volume 1", section 3-5.5.1.5.

Originator Vendor Id — usVendorld

Provides contains the Vendor ID of the connection originator (i.e. the contents of attribute #1 of
instance #1 of the connection originator’s Identity Object).

Originator Serial Number — ulOSerialNum

Provides the Serial Number of the connection originator (i.e. the contents of attribute #6 of instance
#1 of the connection originator’s Identity Object).

Priority/Tick Time — bPriority

Contains Priority and Tick Time. The time of the tick is calculated with 2 TickTime.

Bits 5-7 Bit 4 Bits 3-0
Reserved Priority Tick Time
0 — Normal
1 - reserved

Table 94: Meaning of Variable bPriority

Time Out Tick Parameter — bTimeOutTicks

Contains the Time Out in ticks of the FwOpen command.

Timeout Multiplier - bTimeoutMultiple

Contains the value of the connection timeout multiplier, which is needed for the determination of
the connection timeout value. The connection timeout value is calculated by multiplying the RPI
value (requested packet interval) with the connection timeout multiplier. Transmission on a
connection is stopped when a timeout occurs after the connection timeout value calculated by this
rule. The multiplier is specified as a code according to the subsequent table:

Code Corresponding Multiplier
0 x4

1 x8

2 x16

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface 100/172

Code Corresponding Multiplier
3 x32

4 x64

5 x128

6 X256

7 x512

8 -255 Reserved

Table 95: Coding of Timeout Multiplier Values

Transport/Trigger — bTriggerType

Contains the trigger for the T->0O connection and the connection transport class.

Bit 7 Bits 4-6 Bits 3-0
Direction Trigger Connection Class
1 - Server 0 — Cyclic 0—-Class 0
0 — Client 1 — Change of State 1-Class 1
2 — Application Triggered 2 —Class 2
3-Class 3

Table 96: Meaning of Variable bTriggerType

OT Connection ID — ulOTConnlID

Contains the Connection ID for the Consumer Connection (i.e. from originator to target).
TO Connection ID — ulTOConnID

Contains the Connection ID for the Producer Connection (i.e. from target to originator).

OT Requested Packet Interval- ulOTRpi

Contains the requested packet interval for the consumer of the connection (O—>T direction). The
requested packet interval is the time between two subsequent packets (specified in units of
microseconds).

OT Connection Parameter - usOTConnParam
Contains the consumer connection parameter for the connection (O->T direction).

The 16-bit word of the consumer connection parameter (connected to a Forward_Open
command) is structured as follows:

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bits 8-0
Redundant | Connection Type Reserved | Priority Fixed Reserved
Owner [Variable

Table 97: Meaning of Variable usOTConnParam

The values have the following meaning
Fixed/Variable

This bit indicates whether the connection size is variable or fixed to the size specified as
connection size.

If fixed is chosen (bit is equal to 0), then the actual amount of data transferred in one
transmission is exactly the specified connection size.

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface 101/172

If variable is chosen (bit is equal to 1), the amount of data transferred in one single
transmission may be the value specified as connection size or a lower value. This option is
currently not supported.

Note: The option ,variable” is NOT supported.

Priority
These two bits code the priority according to the following table:
Bit 11 |Bit 10 | Priority
0 0 Low priority
0 1 High priority
1 0 Scheduled
1 1 Urgent

Table 98: Priority

Connection Type

The connection type can be specified according to the following table:

Bit 30 | Bit 29 Connection Type

0 0 Null — connection may be reconfigured
0 1 Multicast

1 0 Point-to-point connection

1 1 Reserved

Table 99: Connection Type

Note: The option ,Multicast” is only supported for connections with CIP transport
class 0 and class 1.

Redundant Owner

The redundant owner bit is set if more than one owner of the connection should be allowed
(Bit 15 = 1). If bit 15 is equal to zero, then the connection is an exclusive owner connection.
Reserved fields should always be set to the value.

Note: Redundant Owner connections are not supported by the EtherNet/IP Stack.

OT Connection Size - usOTConnSize

Contains the size of the consuming data of the connection.

TO Requested Packet Interval- ulTORpi

Contains the requested packet interval for the producer (T->O direction). The requested packet
interval is the time between two subsequent packets (specified in units of microseconds).

TO Connection Parameter - usTOConnParam

Similarly to usOTConnParam, contains the producer connection parameter for the connection (T>0
direction).

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface 102/172

TO Connection Size - usTOConnSize
Contains the size of the producing data of the connection.

Production Inhibit Time - ulProlnhib
Contains the production inhibit time
Extended State — ulExtendedState

The extended state has additional information about the connection. This value is only used when
ulConnectionState is EIP_UNCONNECT

ulConnectionState = Numeric | Meaning

Value
IT (ulConnectionState == EIP_UNCONNECT)
EIP _CONN_STATE_UNDEFINED|0Q No extended state available
EIP_CONN_STATE_TIMEOUT 1 Connection closed by timeout
IT (ulConnectionState == EIP_CONNECT)
EIP_CONN_STATE_UNDEFINED | 0 ‘ No extended state available

Table 100: Priority

Figure 14 below displays a sequence diagram for the EI1P_OBJECT_CONNECTION_IND/RES
packet.

EIP_OBJECT_CONNECTION_IND/RES (Stack Packet Set)

I
' Connection established / closed / timed out

EIP_OBJECT_CONNECTION_RES

1
|
:
EIP_OBJECT_CONNECTION_IND l
1
1
1
1
1

Figure 14: Sequence Diagram for the EIP_OBJECT_CONNECTION_IND/RES Packet for the Stack Packet Set

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface

103/172

Packet Structure Reference

typedef struct EIP_OBJECT_CONNECTION_IND_Ttag

TLR_UINT32 ulConnectionState;

uintl6_t usNumeExclusiveOwner;
uintl6_t usNumlnputOnly;
uintl6_t usNumListenOnly;
uintl6_t usNumExplicitMessaging;

uint8_t bConnType;

uint8 t abReserved[3];

uint32_t ulClass;

uint32_t ullnstance;

uint32_t ulOTConnectionPoints;
uint32_t ulTOConnectionPoints;

uintl6é_t usConnSerialNum;
uintlé_t usVendorld;
uint32_t ulOSerialNum;

uint8_t bPriority;

uint8_t bTimeOutTicks;
uint8 t bTimeoutMultiple;
int8_t bTriggerType;

uint32_t ulOTConnlD;
uint32_t ulTOConnlD;

uint32_t ulOTRpi;
uintlé_t usOTConnParam;
uintlé_t usOTConnSize;
uint32_t ulTORpi;
uintlé_t usTOConnParam;
uintlé_t usTOConnSize;

uint32_t ulProlnhib;

TLR_UINT32 ulExtendedState;
} EIP_OBJECT_CONNECTION_IND_T;

#define EIP_OBJECT CONNECTION_IND_SIZE \
sizeof (EIP_OBJECT_CONNECTION_IND_T)

typedef struct EIP_OBJECT PACKET CONNECTION_IND_Ttag {

TLR_PACKET_HEADER_T tHead;

EIP_OBJECT _CONNECTION_IND_T tData;
3 EIP_OBJECT_PACKET_CONNECTION_IND_T;

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

The Application Interface

104/172

Packet Description

Structure EIP_OBJECT_PACKET_CONNECTION_IND_T

Type: Indication

Variable Type Value / Range Description

tHead — Structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination Queue-Handle. Set to
0: Destination is operating system rcX
32 (0x20): Destination is the protocol stack

ulSrc UINT32 Source Queue-Handle. Set to:
0: when working with loadable firmware.
Queue handle returned by TLR_QUE_IDENTIFY():
when working with loadable firmware.

ulDestld UINT32 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.
Set to 0, will not be changed

ulSrcld UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process. This variable may be
used for low-level addressing purposes.

ulLen UINT32 76 EIP_OBJECT_CONNECTION_IND — Packet data length
in bytes

ulld UINT32 0..2%1 Packet Identification as unique number generated by
the Source Process of the Packet

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 Ox1A2E EIP_OBJECT_CONNECTION_IND - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons

ulRout UINT32 X Routing, do not touch

tData - Structure EIP_OBJECT_CONNECTION_IND_T

ulConnectionState UINT32 0,1

Reason of changing the connection state

Connection established (1)
Connection disconnected (0)

usNumExclusiveOwner UINT16

Number of established exclusive owner connections

usNuminputOnly UINT16

Number of established input only connections

usNumListenOnly UINT16

Number of established listen only connections

usNumExplicitMessaging | UINT16

Number of established explicit connections

bConnType UINTS8 1-5 Connection Type:
1 - Exclusive Owner
3 — Listen Only
4 — Input Only
5 — Explicit Messaging
abReserved UINT8[3] 0 Reserved. Always set to 0.
ulClass UINT32 Class to which the connection was directed
ullnstance UINT32 Corresponding class instance

ulOTConnectionPoints UINT32

Output connection point

ulTOConnectionPoints UINT32

Input connection point

usConnSerialNum UINT16

Serial number of the connection

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface

105/172

Structure EIP_OBJECT_PACKET_CONNECTION_IND_T

Type: Indication

usVendorld UINT16 Originator vendor id
ulOSerialNum UINT32 Originator serial number
bPriority UINT8 Priority/Tick Time
bTimeOutTicks UINT8 Message timeout
bTimeoutMultiple UINT8 Time out multiplier
bTriggerType UINT8 Class/Trigger type
ulOTConnID UINT32 O->T Connection ID
ulTOConnID UINT32 T->0 ConnectionlD
ulOTRpi UINT32 O->T requested packet interval
usOTConnParam UINT16 O->T Connection parameter
usOTConnSize UINT16 O->T data size
ulTORpi UINT32 T->0 requested packet interval
usTOConnParam UINT16 T->0 Connection parameter
usTOConnSize UINT16 T->0 data size
ulProlnhib UINT32 Producer inhibit time
ulExtendedState UINT32 0: No extended status

1: Connection timeout

Table 101: EIP_OBJECT_CONNECTION_IND — Indication of Connection

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

The Application Interface

106/172

Packet Structure Reference

struct EIP_OBJECT PACKET CONNECTION_RES_Ttag

}:

Packet Description

TLR_PACKET_HEADER_T

tHead;

Structure EIP_OBJECT_PACKET_CONNECTION_RES_T

Type: Response

Variable

Type

Value / Range

Description

tHead — Structure TLR_|

PACKET_HEADER_T

ulDest UINT32 See rulesin Destination Queue Handle
section 3.2.1
ulSrc UINT32 See rulesin Source Queue Handle
section 3.2.1
ulDestld UINT32 See rules in Destination Queue Reference
section 3.2.1
ulSrclid UINT32 See rules in Source Queue Reference
section 3.2.1
ulLen UINT32 0 Packet Data Length (In Bytes)
ulld UINT32 0..2%1 Packet Identification As Unique Number
ulSta UINT32 See chapter Status/Error Codes Overview
ulCmd UINT32 0x00001A2F Command / Response
ulExt UINT32 Reserved
ulRout UINT32 Routing Information

Table 5: EIP_OBJECT_CONNECT ION_RES — Response to indication of Connection

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface 107/172

4.2.3 Indication of acyclic Data Transfer

This packet indicates an acyclic service coming from the network. It will only be received if:

an additional object class has been registered using the command
EIP_OBJECT_MR_REGISTER_REQ/CNF (see section 4.1.4 on page 65 of this document)

or a service has been registered for an existing object using
EIP_OBJECT _REGISTER_SERVICE_REQ/CNF (see section 4.1.7 on page 79 of this
document)

It delivers the following parameters:

the O—>T connection ID of the class 3 connection, in case the service request is bound to a
class 3 connection (connected)

a CIP Service Code

the CIP Object Class ID

the CIP Instance number

the CIP Attribute number

an array containing unstructured data (depending on the service code)

the sequence count in case this service was sent over a class 3 connection (see ulSrcld of
packet header)

The parameters service code, class ID, instance and attribute correspond to the normal CIP
Addressing. These fields are used for the most common services that use the addressing format
“Service - Class - Instance —> Attribute”. In case the service uses another format, the path
information is put into the data part (abData]]) of this packet.

The data segment abData[] may not be present for services that do not need data sent along with
the request (e.g. Get services). The ulLen field of the packet header can be evaluated to determine
whether there is data available.

service_data_size = tHead.ulLen - EIP_OBJECT_CL3_SERVICE_IND_SIZE

The parameter ulService holds the requested CIP service that shall be applied to the object
instance selected by the variables ulObject and ul Instance of the indication packet.

CIP services are divided into different address ranges. The subsequent Table 102: Specified
Ranges of numeric Values of Service Codes (Variable ulService) gives an overview. This table is
taken from the CIP specification (“Volume 1 Common Industrial Protocol Specification Chapter 4,
Table 4-9.6", see reference [3]).

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface

108/172

of service code
(variable ulService)

Range of numeric value | Meaning

0x00-0x31 Open. The services associated with this range of service codes are referred to as
Common Services. These are defined in Appendix A of the CIP Networks Library, Volume
1 (reference #3).

Chapter 2 of reference [4])

0x32-0x4A Range for service codes for vendor specific services

0x4B-0x63 Range for service codes for object class specific services

0x64-0x7F Reserved by ODVA for future use

0x80-0xFF Reserved for use as Reply Service Code (see Message Router Response Format in

0x0100-0xFFFF

Hilscher specific services to manage objects from application side.

Table 102: Specified Ranges of numeric Values of Service Codes (Variable ulService)

Note: Not every service is available on every object.

If you use Class IDs that are in the Vendor Specific range, use need to define by yourself

what services and attributes are supported by this object class.

If you use Class IDs that are not in the Vendor Specific range, the CIP specification
describes all required and optional services and attributes the class supports.

Depending on this the host application must implement the handling of incoming

services.

Table 103: Service Codes for the Common Services according to the CIP specification lists the
service codes for the Common Services. This table is taken from the CIP specification (“Volume 1
Common Industrial Protocol Specification Chapter 5, Table 5-1.1", see reference [3]).

Service code (numeric value of
ulService)

Service to be executed

00 Reserved

01 Get_Attributes_All

02 Set_Attributes_All

03 Get_Attribute_List

04 Set_Attribute_List

05 Reset

06 Start

07 Stop

08 Create

09 Delete

0A Multiple_Service_Packet
0B Reserved for future use
0D Apply_Attributes

OE Get_Attribute_Single

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

The Application Interface 109/172
Service code (numeric value of | Service to be executed
ulService)
OF Reserved for future use
10 Set_Attribute_Single
11 Find_Next_Object_Instance
12-13 Reserved for future use
14 Error Response (used by DevNet only)
15 Restore
16 Save
17 No Operation (NOP)
18 Get_Member
19 Set_Member
1A Insert_Member
1B Remove_Member
1C GroupSync
1D-31 Reserved for additional Common Services

Table 103: Service Codes for the Common Services according to the CIP specification

Depending on what services, instances and attributes are supported by the addressed object, the
host application must answer the service with either success or with an appropriate error code.

Therefore, the response packet holds two error fields: ulGRC and ulERC

The Generic Error Code (ulGRC) can be used to indicate whether the service request could be
processed successfully or not. A list of all possible codes is provided in section 5.2“General
EtherNet/IP Error Codes” of this document.

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

The Application Interface 110/172

The most common General Error Codes are:

General Status Code Status Name Description
(specified hexadecimally)
00 Success The service has successfully been performed by the specified
object.
05 Path destination The path references an unknown object class, instance or
unknown structure element causing the abort of path processing.
08 Service not The requested service has not been implemented or has not
supported been defined for this object class or instance.
09 Invalid attribute value | Detection of invalid attribute data
0A Attribute list error An attribute in the Get_Attribute_List or Set_Attribute_List
response has a status not equal to 0.
ocC Obiject state conflict | The object is not able to perform the requested service in the
current mode or state
OE Attribute not settable | Attempt to change a non-modifiable attribute.
10 Device state conflict | The current mode or state of the device prevents the execution
of the requested service.
13 Not enough data The service did not supply all required data to perform the
specified operation.
14 Attribute not An unsupported attribute has been specified in the request
supported
15 Too much data More data than was expected were supplied by the service.
1F Vendor specific error | A vendor specific error has occurred. This error should only
occur when none of the other general error codes can correctly
be applied.
20 Invalid parameter A parameter which was associated with the request was invalid.

The parameter does not meet the requirements of the CIP
specification and/or the requirements defined in the specification
of an application object.

Table 104: Most common General Status Codes

The Extended Error Code (ERC) can be used to describe the occurred error having already been
classified by the generic error code in more detail.

If the service will be answered with success, additional data can be sent with the reply in the
abData field. The byte size of the data must be added to the basic packet length
(EIP_OBJECT_CL3_SERVICE_RES_SIZE) in the ulLen field of the packet header.

Figure 9 below displays a sequence diagram for the EIP_OBJECT_CL3_SERVICE_IND/RES
packet in case the host application uses the Extended or Stack Packet Set (see 3.2 “Configuration
Using the Packet API”).

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface 111/172

EIP_OBJECT_CL3_SERVICE_IND/RES (Stack Packet Set)

EIP_OBJECT CL3_SERVICE_IND

Example:Get attribute service to user
defined object class (class ID 0xC3)

senvice:0x0E (get attribute single),
class:0xC3,

instance Ox01,

attribute:0x02

Process semice request.

EIP_OBJECT CL3_SERVICE_RES

¥

Send response
| -
i -—I

Figure 15: Sequence Diagram for the EIP_OBJECT_CL3_SERVICE_IND/RES Packet for the Stack Packet Set

Optional sequence count handling:

In case the received service indication is based on a class 3 connection, the ulSrcld field of the
packet header provides the sequence count of that specific service request. The sequence count is
usually used to detect delivery of duplicate data packets. However, the originator of the connection
can also resend a service with the same sequence count for example to maintain the connection.

The host application is not required to handle the sequence count at all. It can handle all
indications just as if the sequence count is different from service to service. It depends on the
behavior of the object the host application implements.

The following use cases illustrate different situations and at the same time show how the host
application can handle service indications.

Use Messaging Description

case | Type

1 Unconnected No sequence count available. Therefore no special handling possible
(see Figure Client sends a service request
16) Server sends a service response

Client sends a service request
Server sends a service response

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface 112/172

2 Connected Normal communication (The sequence count changes from service indication to service
(see Figure indication):
17) Client sends a service request with sequence count x

Server sends a service response with sequence count X

Client sends a service request with sequence count x+1
Server sends a service response with sequence count x+1

Client sends a service request with sequence count x+2
Server sends a service response with sequence count x+2

3 Connected Lost packets:

(Figure 18) Client sends a service request with sequence count x
Server sends a service response with sequence count X

Client sends a service request with sequence count x+1, but server does not receive the
packet

Client sends a service request with sequence count x+1
Server sends a service response with sequence count x+1

Client sends a service request with sequence count x+2
Server sends a service response with sequence count x+2, but client does not receive the
packet

Client sends a service request with sequence count x+2
Server sends a service response with sequence count x+2

4 Connected Client maintains the connection:
(see Figure Client sends a service request with sequence count x
19) Server sends a service response with sequence count x

Client sends a service request with sequence count x (too keep the connection alive)
Server sends a service response with sequence count x (too keep the connection alive)

Client sends a service request with sequence count x (too keep the connection alive)
Server sends a service response with sequence count x (too keep the connection alive) .

Client sends a service request with sequence count x (too keep the connection alive)
Server sends a service response with sequence count x (too keep the connection alive)

Client sends a service request with sequence count x+1
Server sends a service response with sequence count x+1

Table 105: Service Indication Use Cases and Sequence Count Handling

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface 113/172

Use Case 1: Unconnected Messaging
EtherNet/IP device with Hilscher Stack (Server) EtherNet/IP Client

{PLC, HMI, ...
[ttt Appicaton| [P stack]

Client sends unconnected
senice request

UncdnnectedSenviceRequest

Forward SernviceRequest with indication
EIP_OBJECT_CL3_SERVICE_IND (ulSrcld = 0, ulConnectionld = 0)

Start/Perfrom service

Send response with EIP_OBJECT_CL3_SERVICE_RES

lUnco nectedSeniceResponse()

senvice request

Client sends unconnected IT

UnegnnectedSenviceRequest

Forward SenviceRequest with indication
EIP_OBJECT_CL3_SERVICE_IND (ulSrcld = 0, ulConnectionld = 0)

Start/Perfrom service

Send response with EIP_OBJECT_CL3_SERVICE_RES

.
lUnco nectedSeniceResponse()

Figure 16: Sequence Diagram for the EIP_OBJECT_CL3_SERVICE_IND/RES (Sequence Count Handling— Use case 1)

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface

114/172

Use Case 2: Connected Messaging - Normal Communication

EtherNet/IP device with Hilscher Stack (Server)

{ Client 1 opens a class 3 connection with the conne:

(the connection ID is unique in the network)

ction ID Client1_Connectionld

EtherNet/IP Client 1
{PLC, HMI, ...}

EtherNet/IP Client 2
{PLC, HMI, ...}

I
| Forw

ardOpenRequest(Client! _Connectionld)

Ope

Fonng

Connection(Client1_Connectionld)

i

ardOpenResponse(Client!_Connectionld)

‘ Client1_Connectionld is reported to application Iﬁ

Indicate Connection with indication
EIP_OBJECT_CONNECTION_IND(tData tExtinfo.ulConConnld = Client1_Connectionld)

Client 2 opens a class 3 connection with the conne

(the connection ID is unique in the network)

ction ID Client2_Connectionld

| Fonw

ardOpenRequest(Client2_Connectionld)

Ope

Fonng

Connection(Client2_Connectionld)

ardOpenResponse(Client2_Caonnectionld)

‘ Client2_Caonnectionld is reported to application Iﬁ

Indicate Connection with indication
EIP_OBJECT_CONNECTION_IND(tData.tExtInfo.ulConConnld = Client2_Connectionld)

:Client1 sends connected service request with sequence count x l

| Clas

3SeniceRequest(Client!_Connectionld, seq=x)

Forward ServiceRequest with indication
EIP_OBJECT_CL3_SERVICE_IND (ulSrcld = x, ulConnectionld = Client!_Connectionld)

o

Start/Perfrom senice

i —

Send response with EIP_OBJECT_CL3_SERVICE_RES

-
>
ICIass

BSeniceResponse(Client!_Caonnectionld, seq=y]

: Client 1 sends connected service request with sequence count x+1 :
T

I
I Clas

3SeniceRequest(Client!_Connectionld, seq=x+4

Forward ServiceRequest with indication
EIP_OBJECT_CL3_SERVICE_IND (ulSrcld = x+1, ulConnectionld = Client!_Connectionld)

[

I
Start/Perfrom senice i
I
I
I
I
I

Send response with EIP_OBJECT_CL3_SERVICE_RES

BSenviceResponse(Client!_Cannectionld, seq=x

1)

-
-
ICIass

: Client 2 sends connected service request with sequence county :

1 Clas

3SeniceRequest(Client2_Connectionld, seq=y)

Fonward ServiceRequest with indication
EIP_OBJECT_CL3_SERVICE_IND (ulSrcld = y, ulConnectionld = Client2_Connectionld)

I
Start/Perfrom senice i
I
I
I
I
I

Send response with EIP_OBJECT_CL3_SERVICE_RES

-

>
ICIass

BSeniceResponse(Client2_Cannectionld, seq=y|

: Client 2 sends connected service request with sequence county+1 i

 Clas:

3SeniceRequest(Client2_Connectionld, seq=y+4

Forward ServiceRequest with indication
EIP_OBJECT_CL3_SERVICE_IND (ulSrcld = y+1, ulConnectionld = Client2_Connectionld)

Start/Perfrom semice

-
>
ICIass

Send response with EIP_OBJECT_CL3_SERVICE_RES

BSeniceResponse(Client2_Cannectionld, seq=y|

1)

Figure 17: Sequence Diagram for the EIP_OBJECT_CL3_SERVICE_IND/RES (Sequence Count Handling— Use case 2)

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released

| Public

© Hilscher, 2015-2016

The Application Interface 115/172

Use Case 3: Connected Messaging - Lost Packets
EtherNet/IP device with Hilscher Stack (Server) EtherNet/IP Client

{PLC, HMI, ...}

Client 1 opens a class 3 connection with the connection ID Client1_Connectionld
(the connection ID is unique in the network)

FomwardOpenRequest(Client!_Connectionld)

OpenConnection(Client1_Caonnectionld)

ForwardOpenResponse(Client1_Connectionld)

| Client1_Connectionld is reported to application H

Indicate Connection with indication
EIP_OBJECT_CONNECTION_IND(tData.tExtInfo.ulCanConnld = Client1_Caonnectionld)

:Client1 sends connected service request with sequence count x f ;
| i
1)
1)

Clasg3SeniceRequest(Client_Connectionld, seq=x)|

Forward SenviceRequest with indication
EIP_OBJECT_CL3_SERVICE_IND (ulSrcld = x, ulConnectionld = Client!_Connectionld)

Start/Perfram semvice

Send response with EIP_OBJECT_CL3_SERVICE_RES

A J

ClasspSeniceResponse(Client!_Caonnectionld, seq=x]

Client 1 sends a service request with sequence count x+1, but server does not receive the packet
==> Client 1 resends a service request with sequence count x+1
==> Server sends a service response with sequence count x+1

ClassBSeniceRequest(Client! _Connectionld, segq=x+

Packst is lost!

Clasg3SeniceRequest(Client_Connectionld, seq=x+

Forward SewviceRequest with indication
EIP_OBJECT_CL3_SERVICE_IND (ulSrcld = x+1, ulConnectionld = Client1_Connectionld)

Start/Perfrom sewice

Send response with EIP_OBJECT _CL3_SERVICE_RES

ClasspSeniceResponse(Client!_Connectionld, seq=xj

Client 1 sends a service request with sequence count x+2
==> Server sends a service response with sequence count x+2, but client 1 does not receive the packet

Client 1 sends a service request with sequence count x+2
== Server sends a service response with sequence count x+2

Clasg3SeniceRequest(Clisnt!_Connectionld, seq=x+42)

Forward SewviceRequest with indication
EIP_OBJECT_CL3_SERVICE_IND (ulSrcld = x+2, ulConnectionld = Client]_Connectionld)

Start/Perfrom sewice

Send response with EIP_OBJECT_CL3_SERVICE_RES

ClasspSeniceResponse(Client_Connectionld, seq=xp#2)

L

Packet is lost! 5

Clasg3SeniceRequest(Clisnt!_Connectionld, seq=x+42)

Forward SenviceRequest with indication
EIP_OBJECT_CL3_ SERVICE_IND (ulSrcld = x+2, ulConnectionld = Client1_Connectionld)

Here the application receives the service with the duplicate sequence count

Now it's up to the application what to do

It can start/perform the requested semnvice just as if this would be the first request.
Or it does not start/perform it because maybe the semvice that was requested
the first time is still running inside the application

Independent on what the application decides, the response packet needs to be
identical to the first response packet, since it can happen that the client did just
not receive the first response (just like in this example here)

DoAnything()

Send response with EIP_OBJECT_CL3_SERVICE_RES

A J

ClassBSeniceResponse(Client!_Connectionld, seq=x#2)

Figure 18: Sequence Diagram for the EIP_OBJECT_CL3_SERVICE_IND/RES (Sequence Count Handling — Use case 3)

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface 116/172

Use Case 4: Connected Messaging - Client maintains the connection (keep alive)
EtherNet/IP device with Hilscher Stack EtherNet/IP Client

{PLC, HMI, ...)

Client 1 opens a class 3 connection with the connection ID Client1_Connectionld
(the connection ID is unique in the network)

ForwardCpenRequest(Client!_Connectionld)
CpenConnection(Client!_Connectionld)
N
FomwardOpenResponse(Client_Connectionld)
| Client1_Connectionld is reported to application Iﬁ
Indicate Connection with indication
I4!2IPJ)BJECLCONNECTI()NJND(tData.tExtinfo.ulConConnld = Client1_Connectionld)

Client 1 sends connected service request with sequence count x
==>Server sends a service response with sequence count x

Clasg3SenviceRequest(Client1_Caonnectionld, seq=x)

Forward SeniceRequest with indication
EIP_OBJECT_CL3_SERVICE_IND (ulSrcld = x, ulConnectionld = Client1_Connectionld

Start/Perfrom semvice

)

Send response with EIP_OBJECT_CL3_SERVICE_RES

ClassPSeniceResponse(Client_Connectionld, seq=x|

| Client 1 sends a service request with sequence count x (to keep the connection alive), |
| ==>Server sends a service response with sequence count x (too keep the connection alive) |

Clasg3SeniceRequest{Client!_Connectionld, seq=x)
Forward ServiceRequest with indication

EIP_OBJECT_CL3_SERVICE_IND (ulSrcld = x, ulConnectionld = Client1_Connectionld)

Here the application receives the semvice with the duplicate sequence count
Now it's up to the application what to do.

It can start/perform the requested senvice just as if this would be the first request
Or it does not start/perform it because maybe the semwice that was requested
the first time is still running inside the application.

Independent on what the application decides, the response packet needs to be
identical to the first response packet, since it can happen that the client did just
nat receive the first response.

DoAnything()

Send response with EIP_OBJECT_CL3_SERVICE_RES

ClassBSeniceResponse(Client!_Connsctionld, seq=y]

Client 1 sends a service request with sequence count x (to keep the connection alive),
==>Server sends a service response with sequence count x (too keep the connection alive)

Clasg3SeniceRequest{Client1_Connectionld, seq=x)

Forward SenviceRequest with indication
EIP_OBJECT_CL3_SERVICE_IND (ulSrcld = x, ulConnectionld = Client1_Connectionld)

Here the application receives the semvice with the duplicate sequence count.
Now it's up to the application what to do

It can start/perform the requested semvice just as if this would be the first request.
Or it does not start/perform it because maybe the sewice that was requested
the first time is still running inside the application.

Independent on what the application decides, the response packet needs to be
identical to the first response packet, since it can happen that the client did just
not receive the first response.

DoAnything()

Send response with EIP_OBJECT_CL3_SERVICE_RES

lCIassSSewi:eRespunse(C\ientLCannectiun\d, sy

i
Client sends a service request with sequence count x+1, I

|==>Server sends a service response with sequence count x+1 |
1)
1)

Clasg3SeniceRequest(Client!_Connectionld, seq=x+4

Forward SeniceRequest with indication
EIP_OBJECT_CL3_SERVICE_IND (ulSrcld = x+1, ulConnectionld = Client1_Connectionld)

Start/Perfrom semvice

Send response with EIP_OBJECT_CL3_SERVICE_RES

ClassBSeniceResponse(Client1_Connectionld, seq=y

Figure 19: Sequence Diagram for the EIP_OBJECT_CL3_SERVICE_IND/RES (Sequence Count Handling— Use case 4)

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface

117/172

Packet Structure Reference
typedef struct EIP_OBJECT_CL3_SERVICE_IND_Ttag

TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT8

ulConnectionld; /*1< Connection Handle */
ulService;

ulObject;

ullnstance;

ulAttribute;

abData[1];

3 EIP_OBJECT_CL3_SERVICE_IND_T;

typedef struct EIP_OBJECT PACKET CL3_SERVICE_IND_Ttag

TLR_PACKET HEADER_T tHead;
EIP_OBJECT CL3_SERVICE_IND.T tData;
3 EIP_OBJECT_PACKET_CL3_SERVICE_IND_T;

#define EIP_OBJECT CL3_SERVICE_IND_SIZE (sizeof(EIP_OBJECT CL3 SERVICE_IND_T)-1)

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

The Application Interface

118/172

Packet Description

Structure EIP_OBJECT PACKET_CL3_SERVICE_IND_T

Type: Indication

Variable Type Value / Range Description

tHead — Structure TLR_PACKET _HEADER_T

ulDest UINT32 Destination Queue-Handle. Set to
0: Destination is operating system rcX
32 (0x20): Destination is the protocol stack

ulSrc UINT32 Source Queue-Handle. Set to:
0: when working with loadable firmware.
Queue handle returned by TLR_QUE_IDENTIFY():
when working with loadable firmware.

ulDestld UINT32 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.
Set to 0, will not be changed

ulSrcld UINT32 Holds the sequence count of the service request in case
the service is based on a class 3 connection
(tData.ulConnectionld != 0).
ulSrcld is always 0 for unconnected service request.
(see sequence diagrams in Figure 16, Figure 17, Figure
18 and Figure 19)

ullLen UINT32 20 +n Packet Data Length (In Bytes)
n = Length of Service Data Area

ulld UINT32 0..2%1 Packet Identification As Unique Number

ulSta UINT32 See Packet Structure Reference

ulCmd UINT32 Ox1A3E EIP_OBJECT_CL3_SERVICE_IND - Command /
Response

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

tData - Structure EIP_OBJECT_CL3_SERVICE_IND_T

ulConnectionld UINT32 0..2%1 Uncial number of the request

ulService UINT32 1-OxFFFF CIP Service Code

ulObject UINT32 1-OxFFFF CIP Class ID

ul Instance UINT32 1-OxFFFF CIP Instance Number

ulAttribute UINT32 0-OxFFFF CIP Attribute Number
The attribute number is 0, if the service does not
address a specific attribute but the whole instance.

abData[] UINTS8[n] n bytes of service data (depending on service)
This may also contain path information for instance in
case that the service does not address an object with
the format Class / Instance / Attribute.

Table 106: EIP_OBJECT_CL3_SERVICE_IND - Indication of acyclic Data Transfer

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

The Application Interface

119/172

Packet Structure Reference
typedef struct EIP_OBJECT_CL3_SERVICE_RES_Ttag

TLR_UINT32 ulConnectionld;
TLR_UINT32 ulService;
TLR_UINT32 ulObject;
TLR_UINT32 ul Instance;
TLR_UINT32 ulAttribute;
TLR_UINT32 ulGRC;
TLR_UINT32 ulERC;
TLR_UINT8 abData[1];

}EIP_OBJECT CL3_SERVICE_RES T;

/*1< Connection Handle */

/*1< Generic Error Code */
/*1< Extended Error Code */

typedef struct EIP_OBJECT_PACKET_CL3_SERVICE_RES_Ttag

TLR_PACKET_HEADER_T tHead;
EIP_OBJECT CL3_SERVICE_RES T tData;
3 EIP_OBJECT_PACKET CL3_SERVICE_RES T;

#define EIP_OBJECT CL3_SERVICE_RES_SIZE (sizeof(EIP_OBJECT CL3 SERVICE_RES_T)-1)

Packet Description

Structure EIP_OBJECT PACKET _CL3_SERVICE_RES_T

Type: Response

Variable Type Value / Range Description
tHead — Structure TLR_PACKET_HEADER_T
ulDest UINT32 See rules in Destination Queue Handle
section 3.2.1
ulSrc UINT32 See rules in Source Queue Handle
section 3.2.1
ulDestld UINT32 See rules in Destination End Point Identifier, specifying the final
section 3.2.1 receiver of the packet within the Destination Process.
ulSrcld UINT32 See rules in Source End Point Identifier, specifying the origin of the
section 3.2.1 packet inside the Source Process
ulLen UINT32 28 +n Packet Data Length (In Bytes)
where n = Length of Service Data Area
ulld UINT32 0..2%1 Packet Identification As Unique Number
ulSta UINT32 See chapter Status/Error Codes Overview
ulCmd UINT32 0Ox00001A3F EIP_OBJECT_CL3_SERVICE_RES - Command /
Response
ulExt UINT32 Reserved
ulRout UINT32 Routing Information
tData - Structure EIP_OBJECT_CL3_SERVICE_RES T
ulConnectionld UINT32 0..2%1 Unique Id from the indication packet
ulService UINT32 1-OxFFFF CIP Service Code from the indication packet
ulObject UINT32 1-OxFFFF CIP Object from the indication packet
ulInstance UINT32 1-OXFFFF CIP Instance from the indication packet
ulAttribute UINT32 0-OxFFFF CIP Attribute from the indication packet
ulGRC UINT32 Generic Error Code
ulERC UINT32 Extended Error Code
abData[] Array of UINT8 n bytes of service data (depending on service)

Table 107: EIP_OBJECT_CL3_SERVICE_RES — Response to Indication of acyclic Data Transfer

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

The Application Interface 120/172

4.2.4 CIP Object Change Indication

This indication will be received by the host application when a CIP object attribute is changed/set
by service from the network.

For detailed information about how to handle this indication see section 3.3 “Example Configuration
Process”

For configuration examples please refer to the example code SetConfigExample and
ExtendedConfigExample.

Handling of Configuration Data Changes”.

Figure 20 below displays a sequence diagram for the
EIP_OBJECT_CIP_OBJECT_CHANGE_IND/RES packet in case the host application uses the
Basic, Extended or Stack Packet Set (see 3.2 “Configuration Using the Packet API").

EIP_OBJECT_CIP_OBJECT_CHANGE_IND/RES (Stack Packet Set)

Example:
Set attribute senvice to Ethernet
Link Object (class 1D 0xFE)

senvice:0x10 (set attribute single),
class:0xFB (Ethernet Link),
instance:0x01

I
I
I
I
I
I
I
I
I
I
:
| attribute:® (Interface control)
-

Check attribute data

Send response

[, A PR

EIP_OBJECT_CIP_OBJECT_CHANGE_IND
including received attribute data)

i

Save parameters (in_non volatile memory)

EIP_OBJECT_CIP_OBJECT CHANGE_RES

A4

Figure 20: Sequence Diagram for the EIP_OBJECT_CIP_OBJECT_CHANGE_ IND/RES Packet for the Stack Packet Set

Packet Structure Reference
typedef struct EIP_OBJECT CIP_OBJECT CHANGE_IND_Ttag

TLR_UINT32 ulInfoFlags; /*1< Information flags */
TLR_UINT32 ulService; /*1< CIP service code */
TLR_UINT32 ulClass; /*1< CIP class ID */
TLR_UINT32 ul Instance; /*1< CIP instance number */
TLR_UINT32 ulAttribute; /*1< CIP attribute number */
TLR_UINT8 abData[EIP_OBJECT_MAX_PACKET_LEN]; /*I< Service Data */

3 EIP_OBJECT_CIP_OBJECT CHANGE_IND_T;

typedef struct EIP_OBJECT PACKET CIP_OBJECT CHANGE_IND_Ttag
TLR_PACKET_HEADER_T tHead;
EIP_OBJECT CIP_OBJECT_CHANGE_IND_T tData;

3 EIP_OBJECT_PACKET_CIP_OBJECT_CHANGE_IND_T;:

#define EIP_OBJECT CIP_OBJECT CHANGE_IND_SIZE (sizeof(EIP_OBJECT CIP_OBJECT_CHANGE_IND_T) -
EIP_OBJECT_MAX_PACKET_LEN)

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface

121/172

Packet Description

structure EIP_OBJECT_PACKET_CIP_OBJECT_CHANGE_IND_T

Type: Indication

Area |Variable ‘ Type | Value / Range Description
tHead | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination Queue-Handle
ulSrc UINT32 Source Queue-Handle
ulDestld UINT32 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process. Set
to 0O for the Initialization Packet
ulSrcld UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process
ulLen UINT32 |20+n Packet Data Length in bytes
n = Number of bytes in abData]]
ulld UINT32 [0..2%1 Packet Identification as unique number generated by the
Source Process of the Packet
ulSta UINT32 See chapter Status/Error Codes Overview
ulCmd UINT32 | Ox1AFA EIP_OBJECT_CIP_OBJECT_CHANGE_IND - Command
ulExt UINT32 |0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 |x Routing, do not touch
tData | structure EIP_OBJECT_CIP_OBJECT_CHANGE_IND_T

ullnfoFlags UINT32 reserved

ulService UINT32 | 0x10 CIP service code
Currently only the SetAttributeSingle service is used in
this indication.

ulClass UINT32 CIP class ID

ullnstance UINT32 CIP instance number

ulAttribute UINT32 CIP attribute number

abDatal] UINT8 Attribute Data

Number of bytes n provided in abData =

tHead.ullLen -
EIP_OBJECT_CIP_OBJECT_CHANGE_IND_SIZE

Table 108: EIP_OBJECT_CIP_OBJECT_CHANGE_IND — CIP Object Change Indication

Packet Structure Reference
typedef struct EIP_OBJECT_PACKET_CIP_OBJECT_ CHANGE_RES_Ttag

TLR_PACKET_HEADER_T

tHead;
} EIP_OBJECT_PACKET_CIP_OBJECT_CHANGE_RES_T;

#define EIP_OBJECT CIP_OBJECT CHANGE_RES_SIZE

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

The Application Interface

122/172

Packet Description

structure EIP_OBJECT_PACKET_CIP_OBJECT_CHANGE_RES_T

Type: Response

Area

Variable

‘ Type

‘ Value / Range

Description

tHead

structure TLR_PACKET _HEADER_T

ulDest UINT32 Destination Queue-Handle

ulSrc UINT32 Source Queue-Handle

ulDestld UINT32 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process. Set
to 0 for the Initialization Packet

ulSrcld UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 |0 Packet Data Length in bytes

ulld UINT32 |[0..2%1 Packet Identification as unique number generated by the
Source Process of the Packet

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 | Ox1AFB EIP_OBJECT_CIP_OBJECT_CHANGE_RES - Command

ulExt UINT32 |0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 |x Routing, do not touch

Table 109: EIP_OBJECT_CIP_OBJECT_CHANGE_RES — Response to CIP Object Change Indication

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

The Application Interface 123/172

4.2.5 Link Status Change

This indication informs the application about the current Link status. This is informative for the
application. Information from any earlier received Link Status Changed Indication is invalid at this
point of time.

Note:

This indication is also sent directly after the host application has registered at the
EtherNet/IP Stack (RCX_REGISTER_APP_REQ — O0x2F10).

Packet Structure Reference
typedef struct RCX_LINK_STATUS_Ttag

TLR_UINT32 ulPort; /*1< Port number\n\n
\valueRange \n
0: Port 1 \n
1: Port 2 */
TLR_BOOLEAN flsFullDuplex; /*1< Duplex mode\n\n

\valueRange \n
0: Half duplex \n
1: Full Duplex */

TLR_BOOLEAN flsLinkUp; /*1< Link status\n\n
\valueRange \n
0: Link is down \n
1: Link is up */

TLR_UINT32 ulSpeed; /*1< Port speed\n\n
\valueRange \n
0: (No link) \n
10: 10MBit \n
100: 100MBit \n */
} RCX_LINK_STATUS_T;
typedef struct RCX_LINK_STATUS_CHANGE_IND_DATA_Ttag
RCX_LINK_STATUS T atLinkData[2]; /*!< Link status data */
} RCX_LINK_STATUS_CHANGE_IND_DATA_T;
typedef struct RCX_LINK_STATUS_CHANGE_IND_Ttag
TLR_PACKET_HEADER_T tHead;
RCX_LINK_STATUS_CHANGE_IND_DATA T tData;
} RCX_LINK_STATUS_CHANGE_IND_T;

#define RCX_LINK_STATUS_CHANGE_IND_SIZE (sizeof(RCX_LINK_STATUS_CHANGE_IND_DATA T))

Packet Description

Structure RCX_LINK_STATUS_CHANGE_IND_T Type: Indication
Area | Variable Type Value / Description
Range

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of application task process queue
ulSrc UINT32 Source queue handle of AP-task process queue
ulDestld UINT32 0 Destination End Point Identifier not in use, set to zero for

compatibility reasons

ulSrcld UINT32 0..2%1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

EtherNet/IP Adapter | Protocol API
DOC150401APIO3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface 124/172

Structure RCX_LINK_STATUS_CHANGE_IND_T Type: Indication
Area | Variable Type Value / Description
Range
ulLen UINT32 32 Packet data length in bytes
ulld UINT32 0..2%1 Packet identification as unique number generated by the source
process of the packet

ulSta UINT32 0 Status not in use for indication.

ulCmd UINT32 0x2FA8 RCX_LINK_STATUS_CHANGE_ IND-command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Data | structure RCX_LINK_STATUS_CHANGE_IND_DATA T

atLinkData[2] | RCX_LINK_ Link status information for two ports.
STATUS_T If only one port is available, ignore second entry.

Table 110: RCX_LINK_STATUS_CHANGE_IND_T - Link Status Change Indication

structure RCX_LINK_STATUS_T

Area | Variable Type Value / Range | Description

ulPort UINT32 |0,1 The port-number this information belongs to.

flsFullDuplex | BOOL32 | FALSE (0) Is the established link full Duplex? Only valid if flsLinkUp is
TRUE TRUE.

flsLinkUp BOOL32 | FALSE (0) Is the link up for this port?
TRUE

ulSpeed UINT32 |0, 10 or 100 If the link is up, this field contains the speed of the established

I(i:lg.lilisisible values are 10 (10 MBit/s), 100 (100MBit/s) and 0

Table 111: Structure RCX_LINK_STATUS_CHANGE_IND_DATA_ T

EtherNet/IP Adapter | Protocol API
DOC150401APIO3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface

125/172

Packet Structure Reference
typedef struct RCX_LINK_STATUS_CHANGE_RES_Ttag

TLR_PACKET_HEADER_T tHead;
3 RCX_LINK_STATUS_CHANGE_RES_T;

#define RCX_LINK_STATUS_CHANGE_RES SIZE (0)

Packet Description

Structure RCX_LINK_STATUS_CHANGE_RES_T

Type: Response

Variable Type Value / Range Description

tHead — Structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of application task process
queue

ulSrc UINT32 Source Queue-Handle

ulDestld UINT32 0 Destination End Point Identifier

ulSrcid UINT32 0..221 Source End Point Identifier, specifying the origin of the
packet inside the Source Process.

ullLen UINT32 0 Packet data length in bytes. Depends on number of
parameters

ulld UINT32 0..2%1 Packet identification as unique number generated by
the source process of the packet

ulSta UINT32 Status not used for request.

ulCmd UINT32 O0x2FA9 RCX_LINK_STATUS_CHANGE_RES - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons

ulRout UINT32 X Routing, do not touch

Table 112: RCX_LINK_STATUS_CHANGE_RES_T - Link Status Change Response

EtherNet/IP Adapter | Protocol API

DOC150401APIO3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface 126/172

4.2.6 Forward_Open Indication

Note:

This functionality must be enabled by setting the Parameter flag
EIP_OBJECT_PRM_FWRD_OPEN_CLOSE_FORWARDING using command
EIP_OBJECT_SET_PARAMETER_REQ (OxO0001AF2).

This indication will be sent to the host application when a Forward_Open request has been
received by the protocol stack from the network. The protocol stack forwards the Forward_Open
request without performing any processing on it. The host application now has the possibility to
check/modify parameters and/or attach “Application Reply” data. Such “Application Reply” data will
be sent to the originator by attaching it to the Forward_Open response message.

Upon reception of the EIP_OBJECT_FWD_OPEN_FWD_RES packet, the protocol stack processes
the Forward_Open request data that comes with this response packet. It will be handled as if it
directly came from the network. After checking parameters and initializing the corresponding
resources, the protocol stack sends the indication
EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND to give feedback to the host application
whether or not the connection could be established.

The host application also has the possibility to reject the Forward_Open request right away by
setting the corresponding status field in the EIP_OBJECT_FWD_OPEN_FWD_RES packet.

For an overview of the possible packet sequences see Figure 21.

To attach “Application Reply” data, just add these at the end of the connection path (abConnPath)
within the Forward Open data and set the size and offset (ulAppReplyOffset,
ulAppReplySize) correspondingly.

EtherNet/IP Adapter | Protocol API
DOC150401APIO3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface

127/172

EIP_OBJECT_FWD_OPEN_FWD_IND/RES

an

d

EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND/RES

EtherNet/IP Device

Hn-llppllll:-llnn Slnld
'

: Enable forwarding of Forward_Open/Close

Network (Originator)

|

Send EIP_OBJECT_SET_PARAMETER_REQ

EIP_OBJECT SET_PARAMETER_CNF

'
'
with flag i
EIP_OBJECT_PRM_FWRD_OPEN_CLOSE_FORWARDING
set __:
Enable forwarding of
Farward_Open/Close
|

: Case: Error in Forward_Open_Request detected by host applis

Farward_Open_Request

Forward Forward_Cpen_Request via
EIP_OBJECT_FWD_OPEN_FWD_IND

Process Forward_Cpen_Request : Error_XYZI

Send EIP_OBJECT_FWD_OPEN_FWD_RES
with ulGRC=Error_XYZ indicating the detected error

(ul

Fofward_Open_Response

IGRC=Errar_XY2)

N

Case: Error in Forward_Open_Request detected by stack Forward_Open

st. ing |
post-p 9 |

T
IOF rward_COpen_Request

Forward Forward_Cpen_Request via
EIP_OBJECT_FWD_OPEN_FWD_IND

Process Forward_Open_Request : OK!

Modify Forward_Open_Raquest parameters if nacessary

Attach "Application reply” data if necessary

Return Forward_Open_Request via
EIP_OBJECT_FWD_OPEN_FWD_RES
with status OK

ocess

[
Fi
Farward_Open_Response
(st

ack generated errar codes)

Send EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND
with stack generated error codes

Process indication

Send EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_RES

{Cau: Forward_Open p

rward_Open_Request : ERRORI
|
ection not established

'
' Fi

rward_Open_Request

Forward Forward_Open_Request via
EIP_OBJECT_FWD_OPEN_FWD_IND

Process Forward_Open_Request - OKI

Modify Forward_Open_Request parameters if necessary

Attach "Application reply” data if necessary

Return Forward_Open_Request via
EIP_OBJECT_FWD_OPEN_FWD_RES
with status OK

mo

T O

(W

cess
rward_Open_Request : OKI

nd success Forward_Cpen_|
th application reply data attachad)

Response

Send EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND
with status OK

Process indication

Send EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_RES.

Host Application Stack

art connection

esta

Network (Originator)

Figure 21: Packet sequence for Forward_Open forwarding functionality

EtherNet/IP Adapter | Protocol API

DOC150401APIO3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

The Application Interface

128/172

Packet Structure Reference

#define EIP_DEFAULT_PATH_LEN

16

typedef struct EIP_CM_LARGEFWOPEN_REQ_ Ttag
{

uint8_t bPriority; /* used to calculate request timeout information */
uint8 t bTimeOutTicks; /* used to calculate request timeout information */
uint32_t ulOTConnlD; /* Network connection ID originator to target */
uint32_t ulTOConnlD; /* Network connection ID target to originator */
uintl6é_t usConnSerialNum; /* Connection serial number */
uintl6_t usVendorld; /* Originator Vendor ID */
uint32_t ulOSerialNum; /* Originator serial number */
uint8_t bTimeoutMultiple; /* Connection timeout multiple */
uint8_t abReservedl[3]; /* reserved */
uint32_t ulOTRpi; /* Originator to target requested packet rate in us */
uint32_t ulOTConnParam; /* Originator to target connection parameter */
uint32_t ulTORpi; /* target to originator requested packet rate in us */
uint32_t ulTOConnParam; /* target to originator connection parameter */
uint8_t bTriggerType; /* Transport type/trigger */
uint8_t bConnPathSize; /* Connection path size */
uint8_ t bConnPath[EIP_DEFAULT_PATH_LEN]; /* connection path */

} EIP_CM_LARGEFWOPEN_REQ T;:

/* Deliver Forward Open to host appli

cation */

typedef struct EIP_OBJECT_LFWD_OPEN_FWD_IND_Ttag

TLR_VOID* pRouteMsg; /* Link to remember underlying Encapsulation

request (must not be modified by app) */
TLR_UINT32 aulReserved[4]; /* Place holder to be filled by response

parameters, see EIP_OBJECT LFWD_OPEN_FWD_RES T */
EIP_CM_LARGEFWOPEN_REQ_T tFwdOpenData; /* Forward Open request data to be delivered to

3 EIP_OBJECT_LFWD_OPEN_FWD_IND_T;

host */

typedef struct EIP_OBJECT PACKET_LFWD_OPEN_FWD_IND_Ttag

TLR_PACKET_HEADER_T
EIP_OBJECT _LFWD_OPEN_FWD_IND_T

tHead;
tData;

3 EIP_OBJECT_PACKET_LFWD_OPEN_FWD_IND_T;

#define EIP_OBJECT LFWD_OPEN_FWD_IND_SIZE (sizeof(EIP_OBJECT LFWD_OPEN_FWD_IND_T) -

EIP_OBJECT_MAX_PACKET_LEN)

EtherNet/IP Adapter | Protocol API

DOC150401APIO3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface

129/172

Packet Descriptio

n

Structure EIP_OBJECT_PACKET LFWD_OPEN_FWD_IND_T

Type: Indication

Variable

Type

Value / Range

Description

tHead — Structure TL

R_PACKET_HEADER_T

ulDest UINT32 0x20/ Destination Queue-Handle
DPMINTF_QUE

ulSrc UINT32 0..2%1 Source Queue-Handle

ulDestld UINT32 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process. Set
to O for the Initialization Packet

ulSrclid UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 60 +n EIP_OBJECT_LFWD_OPEN_FWD_IND_SIZE + n -
Packet Data Length in bytes
n: Length of connection path (abConnPath) in bytes

ulld UINT32 0..2%%1 Packet Identification as unique number generated by the
Source Process of the Packet

ulSta UINT32 Status

ulCmd UINT32 0x1A60 EIP_OBJECT_LFWD_OPEN_FWD_IND - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

tData - Structure EIP_

OBJECT_LFWD_OPEN_FWD_IND_

T

WOPEN_REQ_T

pRouteMsg TLR_VOID* Pointer to remember the underlying encapsulation request
(must not be modified by app)

aulReserved[4] TLR_UINT32 Placeholder to be filled by response parameters, see
EIP_OBJECT_LFWD_OPEN_FWD_RES_T

tFwdOpenData EIP_CM_LARGEF Forward Open data (See Table 114)

Table 113:EI1P_OBJECT_LFWD_OPEN_FWD_IND — Forward_Open indication

EtherNet/IP Adapter | Protocol API

DOC150401APIO3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

The Application Interface

130/172

The following Table 114 explains the structure EIP_CM_APP_LFWOPEN_IND_T:

Structure EIP_CM_APP_LFWOPEN_IND_T

Description
bPriority TLR_UINTS8 Used to calculate request timeout information
bTimeOutTicks TLR_UINTS8 Used to calculate request timeout information
ulOTConnlID TLR_UINT32 Network connection ID originator to target
ulTOConnlID TLR_UINT32 Network connection ID target to originator
usConnSerialNum TLR_UINT16 Connection serial number
usVendorld TLR_UINT16 Originator Vendor ID
ulOSerialNum TLR_UINT32 Originator serial number
bTimeoutMultiple TLR_UINTS Connection timeout multiplier
abReservedl[3] TLR_UINT8 Reserved
ulOTRpi TLR_UINT32 Originator to target requested packet rate in
microseconds
usOTConnParam TLR_UINT16 Originator to target connection parameter
ul TORpi TLR_UINT32 Target to originator requested packet rate in
microseconds
usTOConnParam TLR_UINT16 Target to originator connection parameter
bTriggerType TLR_UINT8 Transport type/trigger
bConnPathSize TLR_UINT8 Connection path size in 16 bit words
abConnPath[EIP_DEFAULT_PATH_LEN] TLR_UINT8 Connection path

Table 114: EIP_CM_APP_LFWOPEN_IND_T - Forward_Open request data

For more information on almost all of these parameters, see section 4.2.2“Connection State

Change Indication”.

EtherNet/IP Adapter | Protocol API

DOC150401APIO3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

The Application Interface

131/172

Packet Structure Reference
typedef struct EIP_OBJECT_LFWD_OPEN_FWD_RES_ Ttag

TLR_VOID*

TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT32

pRouteMsg;

ulGRC;

ulERC;
ulAppReplyOffset;
ulAppReplySize;

EIP_CM_LARGEFWOPEN_REQ T tFwdOpenData;
3 EIP_OBJECT_LFWD_OPEN_FWD_RES_T;

typedef struct EIP_OBJECT _PACKET_LFWD_OPEN_FWD_RES_Ttag

TLR_PACKET_HEADER_T

EIP_OBJECT LFWD_OPEN_FWD_RES_T
3 EIP_OBJECT_PACKET_LFWD_OPEN_FWD_RES T;

tHead;
tData;

#define EIP_OBJECT LFWD_OPEN_FWD_RES_SIZE sizeof(EIP_OBJECT LFWD_OPEN_FWD_RES_T) — \

Packet Description

EIP_OBJECT _MAX_PACKET_LEN

structure EIP_OBJECT_PACKET_LFWD_OPEN_FWD_RES_T

Type: Response

Variable

Type Value / Range

Description

tHead - Structure TLR_|

PACKET_HEADER_T

ulDest UINT32 0x20/ Destination Queue Handle
DPMINTF_
QUE
ulSrc UINT32 0..2%1 Source Queue Handle
ulDestlid UINT32 Destination Queue Reference
ulSrcld UINT32 Source Queue Reference
ulLen UINT32 60 +n EIP_OBJECT_FWD_OPEN_FWD_RES_SIZE + n - Packet Data
Length in bytes
n: Length of connection path (abConnPath) in bytes +
Length of “Application Reply” data in abConnPath
ulld UINT32 0..2%1 Packet Identification as unique number generated by the
Source Process of the Packet
ulSta UINT32 Status
ulCmd UINT32 0x1A61 EIP_OBJECT_LFWD_OPEN_FWD_RES - Command
ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 X Routing, do not touch

tData - Structure EIP_OBJECT_LFWD_OPEN_FWD_|

ND_T

pRouteMsg TLR_VOID* Pointer to underlying Encapsulation request
ulGRC TLR_UINT32 General Error Code, see Table 83: Generic Error (Variable
ulGRC) on page 85
ulERC TLR_UINT32 Extended Error Code, see Table 84: Extended error codes for
the connection manager on page 87
ulAppReplyOffset | TLR_UINT32 Offset of “Application Reply” data
ulAppReplySize TLR_UINT32 Length of “Application Reply” data in bytes.
The “Application Reply” data can be attached by copying it
right behind the connection path in
tFwdOpenData.abConnPath[]
tFwdOpenData EIP_CM_LAR Forward Open data (See Table 114)
GEFWOPEN_R
EQ.T

Table 115: EIP_OBJECT_LFWD_OPEN_FWD_RES — Response of Forward_Open indication

EtherNet/IP Adapter | Protocol API

DOC150401APIO3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

The Application Interface 132/172

4.2.7 Forward_Open_Completion Indication

Note:

This functionality must be enabled by setting the Parameter flag
EIP_OBJECT_PRM_FWRD_OPEN_CLOSE_FORWARDING using command
EIP_OBJECT_SET_PARAMETER_REQ (OxO0001AF2).

This indication will be sent to the host application during processing of a Forward_Open request by
the protocol stack from the network.

As stated in the preceding section, after reception of EIP_OBJECT_FWD_OPEN_FWD_RES and
checking parameters and initializing corresponding resources, the protocol stack sends the
indication EIP_OBJECT FWD OPEN FWD_COMPLETION_ IND to give feedback to the host
application whether the connection could be established or not.

Please have a look at Figure 21 on page 127 to get an overview about the possible packet
sequences.

Packet Structure Reference
typedef struct EIP_OBJECT FWD_OPEN_FWD_COMPLETION_IND_Ttag

TLR_UINT16 usCmlInstance;
TLR_UINT16 usConnSerialNum;
TLR_UINT16 usVendorld;
TLR_UINT32 ulOSerialNum;
TLR_UINT32 ulGRC;
TLR_UINT32 ulERC;
} EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND_T;

typedef struct EIP_OBJECT PACKET_FWD_OPEN_FWD_COMPLETION_IND_Ttag
TLR_PACKET_HEADER_T tHead;
EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND T tData;

3} EIP_OBJECT_PACKET_FWD_OPEN_FWD_COMPLETION_IND_T;

#define EIP_OBJECT FWD_OPEN_FWD_COMPLETION_IND_SIZE \
sizeof(EIP_OBJECT FWD_OPEN_FWD_COMPLETION_IND_T)

EtherNet/IP Adapter | Protocol API
DOC150401APIO3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface

133/172

Packet Description

Structure EIP_OBJECT_PACKET_FWD_OPEN_FWD_COMPLETION_IND_T

Type: Indication

Variable Type Value / Range Description

tHead — Structure TLR_PACKET_HEADER_T

ulDest UINT32 0x20/ Destination Queue-Handle

DPMINTF_QUE

ulSrc UINT32 0..2%1 Source Queue-Handle

ulDestld UINT32 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.
Set to O for the Initialization Packet

ulSrclid UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 16 EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND
_SIZE - Packet Data Length in bytes

ulld UINT32 0..2%1 Packet Identification as unique number generated by
the Source Process of the Packet

ulSta UINT32 Status

ulCmd UINT32 0x1A4C EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND -
Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons

ulRout UINT32 X Routing, do not touch

tData - Structure EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND_T

usCmlnstance TLR_UINT16 0-64 Connection Manager Instance.
Value 0 is not a valid instance number. It will be present
if the connection was not established (UIGRC != 0).

usConnSerialNum |TLR_UINT16 0 - 255 Connection serial number

usVendorld TLR_UINT16 Originator Vendor 1D

ulOSerialNum TLR_UINT32 Originator serial number

ulGRC TLR_UINT32 General Error Code, see Table 83: Generic Error
(Variable ulGRC) on page 85

ulERC TLR_UINT32 Extended Error Code, see Table 84: Extended error
codes for the connection manager on page 87

Table 116: EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND — Forward_Open completion indication

For more

information

on the parameters

usConnSerialNum, usVendorld and

ulOSerialNum, see section 4.2.2“Connection State Change Indication”.

EtherNet/IP Adapter | Protocol API

DOC150401APIO3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

The Application Interface

134/172

Packet Structure Reference

typedef struct EIP_OBJECT PACKET_FWD_OPEN_FWD_COMPLETION_RES_Ttag

TLR_PACKET_HEADER

#define EIP_OBJECT FWD_OPEN_FWD_COMPLETION_RES_SIZE

Packet Descriptio

T

n

_ - tHead;
} EIP_OBJECT_PACKET_FWD_OPEN_FWD_COMPLETION_RES_T;

0

Structure EIP_OBJECT_PACKET_FWD_OPEN_FWD_COMPLETION_RES_T Type: Response

Variable

Type

Value / Range

Description

tHead — Structure TL

R_PACKET HEADER_T

ulDest UINT32 0x20/ Destination Queue-Handle
DPMINTF_QUE

ulSrc UINT32 0..2%1 Source Queue-Handle

ulDestld UINT32 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.
Set to O for the Initialization Packet

ulSrclid UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 0 EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_RES
_SIZE - Packet Data Length in bytes

ulld UINT32 0..2%1 Packet Identification as unique number generated by
the Source Process of the Packet

ulSta UINT32 Status

ulCmd UINT32 0x1A4D EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_RES -
Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons

ulRout UINT32 X Routing, do not touch

Table 117: EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_RES — Response of Forward_Open completion indication

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface 135/172

4.2.8 Forward_Close Indication

Note:

This functionality must be enabled by setting the Parameter flag
EIP_OBJECT_PRM_FWRD_OPEN_CLOSE_FORWARD ING using command
EIP_OBJECT_SET_PARAMETER_REQ (OxO00001AF2).

This indication will be sent to the host application when a Forward_Close request was received by
the protocol stack from the network. The protocol stack forwards the Forward_Close request
without doing any processing on it. Only the parameters “Connection Serial Number”, “Originator

Vendor ID” and “Originator Serial number” will be checked in advance. The host application now
has the possibility to check/modify parameters within the Forward_Close request data.

Upon reception of EIP_OBJECT_FWD_CLOSE_FWD_RES, the protocol stack processes the

Forward_Close request data that comes with this response packet. It will be handled as if it directly
came from the network.

The host application also has the possibility to reject the Forward_Close request right away by
setting the corresponding status field in the EIP_OBJECT_FWD_CLOSE_FWD_RES packet.

For a better understanding of how these packets are used, see Figure 22.

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface

136/172

EIP_OBJECT_FWD_CLOSE_FWD_IND/RES

Host Appllicltion

EtherNet/IP Device

Slnlck Network (Originator)

: Enable forwarding of Forward_Open/Close |

with flag

set

Send EIP_OBJECT_SET_PARAMETER_REQ

EIP_OBJECT_PRM_FWRD_OPEN_CLOSE_FORWARDING

EIP_OBJECT_SET_PARAMETER_CNF

able forwarding of
rward_Open/Close

]

mm

: Case: Forward-Close request to non-existing cs ction |

oy

rward_Close_Request

eck connection triad(
iginator Vendor 1D,
nnection Serial Number,

[a)zJ=)e]

1

Fofward_Close_Response
(ulGRC=Error)

iginator Serial Mumber): ERROR!

Forward Forward_Close_Request via
EIP_OBJECT_FWD_CLOSE_FWD_IND

: Case: Error in Forward_Close_Request detected by host application

Connection not closed

l
1+ Forward_Close_Request

eck connection triad(
iginator Vendor ID,
nnection Serial Number,
iginator Serial Number): OK

]

Process Forward_Close_Request : Error_XYZI

Send EIP_OBJECT_FWD_CLOSE_FWD_RES
with ulGRC=Error_XYZ indicating the detected error

ward_Close_Response

Forward Forward_Close_Request via
EIP_OBJECT_FWD_CLOSE_FWD_IND

:Case: S ful Forward_Close p

Connection not closed

2

rward_Close_Request

eck connection triad(
figinator Vendor ID,
nnection Serial Number,
iginator Serial Number): OK

]

0000

with status OK

Process Forward_Close_Request : OKI

Modify Forward_Close_Request parameters if necessary

Return Forward_Close_Request via
EIP_OBJECT_FWD_CLOSE_FWD_RES

—

drminate connection

Send success
Fofward_Close_Response

Connection closed

Host Application Stack

Network (Originator)

Figure 22: Packet sequence for Forward_Close forwarding functionality

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

The Application Interface 137/172

Packet Structure Reference
#define EIP_OBJECT MAX_PACKET LEN 1520

typedef struct EIP_CM_APP_FWCLOSE_IND_Ttag

TLR_UINT8 bPriority;

TLR_UINT8 bTimeOutTicks;

TLR_UINT16 usConnSerialNum;

TLR_UINT16 usVendorld;

TLR_UINT32 ulOSerialNum;

TLR_UINT8 bConnPathSize;

TLR_UINT8 bReservedl;

TLR_UINT8 bConnPath[EIP_OBJECT_MAX_PACKET_LEN];
} EIP_CM_APP_FWCLOSE_IND_T;

typedef struct EIP_OBJECT_FWD_CLOSE_FWD_IND_Ttag
TLR_VOID* pRouteMsg;
TLR_UINT32 aulReserved[2];
EIP_CM_APP_FWCLOSE_IND_T tFwdCloseData;

} EIP_OBJECT_FWD_CLOSE_FWD_IND_T;

typedef struct EIP_OBJECT_PACKET_FWD_CLOSE_FWD_IND_Ttag
TLR_PACKET_HEADER_T tHead;
EIP_OBJECT_FWD_CLOSE_FWD_IND_T tData;

} EIP_OBJECT_PACKET_FWD_CLOSE_FWD_IND_T;

#define EIP_OBJECT FWD_CLOSE_FWD_IND_SIZE sizeof(EIP_OBJECT_FWD_CLOSE_FWD_IND_T) — \

Packet Description

Structure EIP_OBJECT_PACKET_FWD_CLOSE_FWD_IND_T Type: Indication

Variable Type Value / Range Description

tHead — Structure TLR_PACKET_HEADER_T

ulDest UINT32 0x20/ DPMINTF_QUE | Destination Queue-Handle
ulSrc UINT32 0..2%1 Source Queue-Handle
ulDestld UINT32 Destination End Point Identifier, specifying the final

receiver of the packet within the Destination Process.
Set to O for the Initialization Packet

ulSrclid UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process
ulLen UINT32 24 +n EIP_OBJECT_FWD_CLOSE_FWD_IND_SIZE + n-

Packet Data Length in bytes
n: Length of connection path (abConnPath) in bytes

ulld UINT32 0..2%1 Packet Identification as unique number generated by
the Source Process of the Packet

ulSta UINT32 Status

ulCmd UINT32 O0x1A4E EIP_OBJECT_FWD_CLOSE_FWD_IND - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons

ulRout UINT32 X Routing, do not touch

tData - Structure EIP_OBJECT_FWD_CLOSE_FWD_IND_T

pRouteMsg TLR_VOID Pointer to remember underlying Encapsulation request
(must not be modified by app)

aulReserved[2] | TLR_UINT32 Place holder to be filled by response parameters, see

EIP_OBJECT FWD_CLOSE_FWD_RES_T

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface 138/172

Structure EIP_OBJECT_PACKET_FWD_CLOSE_FWD_IND_T Type: Indication
tFwdCloseData |EIP_CM_APP Forward Close data (See Table 119:
_FWCLOSE_1 EIP_CM_APP_FWCLOSE_IND_T - Forward_Close
ND_T request data

)

Table 118:EI1P_OBJECT_FWD_CLOSE_FWD_IND — Forward_Close request indication

Structure EIP_CM_APP_FWCLOSE_IND_T

Variable Type Description

bPriority TLR_UINT8 Used to calculate request timeout
information

bTimeOutTicks TLR_UINT8 Used to calculate request timeout
information

usConnSerialNum TLR_UINT16 Connection serial number

usVendorld TLR_UINT16 Originator Vendor ID

ulOSerialNum TLR_UINT32 Originator serial number

bConnPathSize TLR_UINT8 Connection path size in 16 bit words

bReservedl TLR_UINTS8 Reserved

bConnPath[EIP_OBJECT_MAX_PACKET_LEN] TLR_UINTS8 Connection path

Table 119: EIP_CM_APP_FWCLOSE_IND_T - Forward_Close request data

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface 139/172

Packet Structure Reference
typedef struct EIP_OBJECT_FWD_CLOSE_FWD_RES_ Ttag

TLR_VOID* pRouteMsg;
TLR_UINT32 ulGRC;
TLR_UINT32 ulERC;

EIP_CM_APP_FWCLOSE_IND_T tFwdCloseData;
} EIP_OBJECT_FWD_CLOSE_FWD_RES_T;

typedef struct EIP_OBJECT_PACKET_FWD_CLOSE_FWD_RES_ Ttag
TLR_PACKET_HEADER_T tHead;
EIP_OBJECT_FWD_CLOSE_FWD_RES_T tData;

} EIP_OBJECT_PACKET_FWD_CLOSE_FWD_RES_T;

#define EIP_OBJECT FWD_CLOSE_FWD_RES_SIZE sizeof(EIP_OBJECT FWD_CLOSE_FWD_RES_T) — \
EIP_OBJECT_MAX_PACKET_LEN

Packet Description

structure EIP_OBJECT_PACKET_FWD_CLOSE_FWD_RES_ T Type: Response

Variable Type Value / Range Description

tHead — Structure TLR_PACKET_HEADER_T

ulDest UINT32 0x20/ DPMINTF_QUE | Destination Queue Handle

ulSrc UINT32 0..2%1 Source Queue Handle

ulDestlid UINT32 Destination Queue Reference

ulSrcld UINT32 Source Queue Reference

ulLen UINT32 24 +n EIP_OBJECT_FWD_CLOSE_FWD_RES_SIZE +n -

Packet Data Length in bytes
n: Length of connection path (abConnPath) in bytes

ulld UINT32 0..2%1 Packet Identification as unique number generated by
the Source Process of the Packet
ulSta UINT32 Status
ulCmd UINT32 0x1A4F EIP_OBJECT_FWD_CLOSE_FWD_RES - Command
ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons
ulRout UINT32 X Routing, do not touch
tData - Structure EIP_OBJECT_FWD_CLOSE_FWD _RES T
pRouteMsg TLR_VOID* Pointer to underlying Encapsulation request
ulGRC TLR_UINT32 General Error Code, see Table 83: Generic Error
(Variable ulGRC) on page 85
ulERC TLR_UINT32 Extended Error Code, see Table 84: Extended error
codes for the connection manager on page 87
tFwdCloseData |EIP_CM_APP Forward Close data (See Table 119:
_FWCLOSE_1 EIP_CM_APP_FWCLOSE_IND_T - Forward_Close
ND_T request data

)

Table 120: EIP_OBJECT_FWD_CLOSE_FWD_RES — Response of Forward_Close indication

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface 140/172
4.3 Additional services requested by the application
This chapter explains services that can be used from the application.
Overview over the additional services of the EtherNet/IP Adapter
No. of Packet Command Page
section code
(REQ/CNF or
IND/RES)
43.1 EIP_APS_GET_MS_NS_REQ 0x0000360E | 141
432 RCX_GET_WATCHDOG_TIME_REQ 0x00002F02 | 143
433 RCX_GET_DPM_IO_INFO_REQ 0x00002FOC | 144
434 RCX_UNREGISTER_APP_REQ 0x00002F12 | 144
435 RCX_DELETE_CONFIG_REQ 0x00002F14 | 144
436 RCX_LOCK_UNLOCK_CONFIG_REQ 0x00002F32 | 144
43.7 RCX_GET_FW_PARAMETER_REQ 0x00002F88 | 144
4.3.8 RCX_FIRMWARE_IDENTIFY_REQ OxO0001EB6 | 144

Table 121: Overview over the additional services of the EtherNet/IP Adapter

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

The Application Interface 141/172

43.1 Get Module Status/ Network Status

This packet can be used by the EtherNet/IP Adapter Application in order to obtain information
about the current module and network status for further evaluation.

Table 126 on page 150 lists all possible values of the Module Status (Parameter
ullModuleStatus of the confirmation packet) and their meanings.

Similarly, Table 127 on page 151 lists all possible values of the Network Status (Parameter
ullNetworkStatus of the confirmation packet) and their meanings.

Figure 23 below displays a sequence diagram for the EIP_APS_GET_MS_NS_REQ/CNF packet:

EIP_APS_GET_MS_NS_REQ/CNF

i
EIP_APS_GET_MS_NS_REQ '

EIP_APS_GET_MS_NS_CNF

A

Figure 23: Sequence Diagram for the EIP_APS_GET_MS_NS_REQ/CNF Packet

Packet Structure Reference
#define EIP_APS GET_MS_NS_REQ SIZE 0

typedef struct EIP_APS_PACKET_GET_MS_NS_REQ Ttag
{

TLR_PACKET_HEADER_T tHead;
3 EIP_APS_PACKET GET_MS_NS_REQ T;

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface

142/172

Packet Description

structure EIP_APS_PACKET_GET_MS NS REQ T
Type: Request
Area |Variable ‘ Type ‘ Value / Range Description
tHead | structure TLR_PACKET_HEADER_T
ulDest UINT32 | 0x20/ Destination Queue-Handle
DPMINTF_QUE
ulSrc UINT32 |[0..2%1 Source Queue-Handle
ulDestld UINT32 See rules in Destination End Point Identifier, specifying the final
section 3.2.1 receiver of the packet within the Destination Process. Set
to 0O for the Initialization Packet
ulSrcld UINT32 See rules in Source End Point Identifier, specifying the origin of the
section 3.2.1 packet inside the Source Process
ulLen UINT32 |0 Packet Data Length in bytes
ulld UINT32 |[0..2%1 Packet Identification as unique number generated by the
Source Process of the Packet
ulSta UINT32 See Packet Structure Reference
ulCmd UINT32 | Ox360E EIP_APS_GET_MS_NS_REQ - Command
ulExt UINT32 |0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 X Routing, do not touch

Table 122: EIP_APS_GET_MS_NS_REQ — Get Module Status/ Network Status Request

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

The Application Interface 143/172

Packet Structure Reference
typedef struct EIP_APS _GET_MS_NS_CNF_Ttag
TLR_UINT32 ulModuleStatus; /*1< Module Status \n
TLR_UINT32 ulNetworkStatus; /*1< Network Status \n
} EIP_APS GET_MS_NS_CNF_T;
#define EIP_APS_GET_MS NS CNF_SIZE sizeof(EIP_APS GET_MS NS _CNF_T)
typedef struct EIP_APS_PACKET_GET_MS_NS_CNF_Ttag

TLR_PACKET_HEADER_T tHead;
EIP_APS_GET _MS_NS_CNF_T tData;

} EIP_APS_PACKET_GET_MS_NS_CNF_T;

Packet Description

structure EIP_APS_PACKET_GET_MS_NS_CNF_T

Type: Confirmation

Area |Variable | Type ‘ Value / Range Description

tHead | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination Queue-Handle
ulSrc UINT32 Source Queue-Handle
ulDestld UINT32 Destination End Point Identifier, specifying the final

receiver of the packet within the Destination Process. Set
to O for the Initialization Packet

ulSrcld UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 Packet Data Length in bytes

ulld UINT32 |[0..2%1 Packet Identification as unique number generated by the
Source Process of the Packet

ulSta UINT32 See Packet Structure Reference

ulcmd UINT32 | Ox360F EIP_APS_GET_MS_NS_CNF - Command

ulExt UINT32 |0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

tData | structure EIP_APS_GET_MS_NS_CNF_T

ulModuleStatus UINT32 |0..5 Module Status
The module status describes the current state of the
corresponding MS-LED (provided that it is connected).

See Table 126 for more information.

ulNetworkStatus UINT32 0..5 Network Status
The network status describes the current state of the
corresponding NS-LED (provided that it is connected).

See Table 127 for more information.
Table 123: EIP_APS_GET_MS_NS_CNF — Confirmation of Get Module Status/ Network Status Request

4.3.2 Get Watchdog Time

This packet is used to obtain the watchdog time.

For more details see reference [1]

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

The Application Interface 144/172
4.3.3 Get DPM 1/O Information

This packet is used to obtain offset and length of the used I/O data space.

For more details see reference [1]

4.3.4 Unregister Application

This packet is used to unregister a registered application.

For more details see reference [1]

4.3.5 Delete Configuration

This packet is used to delete the internal stored configuration (RAM/FLASH). Database files on the
filesystem will not be deleted.

For more details see reference [1]

4.3.6 Lock/Unlock Configuration

This packet is used to lock/unlock the configuration.

For more details see reference [1]

4.3.7 Get Firmware Parameter

This packet is used to get the actual used parameter for the configuration. The stack supports the
same ParameterIDs as for RCX_SET_FW_PARAMETER_REQ. (see Table 87
RCX_SET_FW_PARAMETER_REQ ParameterID)

For more details see reference [1]

4.3.8 Get Firmware Identification

This packet is used to obtain firmware identification.

For more details see reference [1]

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Status/Error Codes Overview 145/172

5 Status/Error Codes Overview

5.1 Stack Specific Error Codes

Hexadecimal Definition

Value Description

0x00000000 TLR_S_OK
Status ok

0xC01F0002 TLR_E_EIP_OBJECT_OUT_OF_MEMORY
System is out of memory

0xC01F0003 TLR_E_EIP_OBJECT_OUT_OF_PACKETS
Task runs out of empty packets at the local packet pool

0xC01F0004 TLR_E_EIP_OBJECT_SEND_PACKET
Sending a packet failed

0xC01F0010 TLR_E_EIP_OBJECT_AS_ALLREADY_EXIST
Assembly instance already exists

0xC01F0011 TLR_E_EIP_OBJECT_AS_INVALID_INST
Invalid Assembly Instance

0xC01F0012 TLR_E_EIP_OBJECT_AS_INVALID_LEN
Invalid Assembly length

0xC01F0020 TLR_E_EIP_OBJECT_CONN_OVERRUN
No free connection buffer available

0xC01F0021 TLR_E_EIP_OBJECT_INVALID_CLASS
Object class is invalid

0xC01F0022 TLR_E_EIP_OBJECT_SEGMENT_FAULT
Segment of the path is invalid

0xC01F0023 TLR_E_EIP_OBJECT_CLASS_ALLREADY_EXIST
Object Class is already used

0xC01F0024 TLR_E_EIP_OBJECT_CONNECTION_FAIL
Connection failed.

0xC01F0025 TLR_E_EIP_OBJECT_CONNECTION_PARAM
Unknown format of connection parameter

0xC01F0026 TLR_E_EIP_OBJECT_UNKNOWN_CONNECTION
Invalid connection ID

0xCO01F0027 TLR_E_EIP_OBJECT_NO_OBJ_RESSOURCE
No resource for creating a new class object available

0xC01F0028 TLR_E_EIP_OBJECT_ID_INVALID_PARAMETER
Invalid request parameter

0xC01F0029 TLR_E_EIP_OBJECT_CONNECTION_FAILED
General connection failure. See also General Error Code and Extended Error Code for more
details.

0xC01F0031 TLR_E_EIP_OBJECT_READONLY_INST
Access denied. Instance is read only

0xC01F0032 TLR_E_EIP_OBJECT_DPM_USED
DPM address is already used by another instance.

0xCO01F0033 TLR_E_EIP_OBJECT_SET_OUTPUT_RUNNING
Set Output command is already running

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

Status/Error Codes Overview

Hexadecimal Definition
Value Description
0xC01F0034 TLR_E_EIP_OBJECT_TASK_RESETING
EtherNet/IP Object Task is running a reset.
0xC01F0035 TLR_E_EIP_OBJECT_SERVICE_ALREADY_EXIST
Object Service already exists
0xC0590001 TLR_E_EIP_APS_COMMAND_INVALID
Invalid command.
0xC0590002 TLR_E_EIP_APS_PACKET_LENGTH_INVALID
Invalid packet length.
0xC0590003 TLR_E_EIP_APS_PACKET_PARAMETER_INVALID
Invalid packet parameter.
0xC0590004 TLR_E_EIP_APS_TCP_CONFIG_FAIL
TCP/IP configuration failed. The TCP/IP task reports an error: IP address, gateway address,
network mask or configuration flags are invalid.
0xC0590007 TLR_E_EIP_APS_ACCESS_FAIL
Unregister application command rejected, because another task then the registered task has send
an unregister application command. Only the registered task can send the unregister application
command.
0xC0590008 TLR_E_EIP_APS_STATE_FAIL
In normal state: clear watchdog command received. This command can'’t be processed in this state
and is rejected.
In watchdog error state: the received command can’'t be processed in this state and is rejected.
0xC0590009 TLR_E_EIP_APS_|O_OFFSET_INVALID
Invalid 1/0O offset.
0xC059000A TLR_E_EIP_APS_FOLDER_NOT_FOUND
Expected folder containing the configuration file(s) not found.
0xC059000B TLR_E_EIP_APS_CONFIG_DBM_INVALID
The configuration file ‘config.nxd’ does not contain the expected configuration parameters.
0xC059000C TLR_E_EIP_APS_NO_CONFIG_DBM
Configurgtion file named ‘config.nxd’ not found. As a result, EtherNet/IP configuration parameters
are missing.
0xC059000D TLR_E_EIP_APS_NWID_DBM_INVALID
The configuration file named ‘nwid.nxd’ does not contain the expected configuration parameters.
0xC059000E TLR_E_EIP_APS_NO_NWID_DBM
Configuration file ‘nwid.nxd’ not found. As a result, TCP/IP configuration parameters are missing.
0xC059000F TLR_E_EIP_APS_NO_DBM
Configuration file missing.
0xC0590010 TLR_E_EIP_APS_NO_MAC_ADDRESS_AVAILABLE
No MAC address available
0xC0590011 TLR_E_EIP_APS_INVALID_FILESYSTEM
Access to file system failed.
0xC0590012 TLR_E_EIP_APS_NUM_AS_INSTANCE_EXCEEDS
Maximum number of assembly instances exceeds.
0xC0590013 TLR_E_EIP_APS_CONFIGBYDATABASE
Stack is already configured via database
0xC0950001 TLR_E_EIP_DLR_COMMAND_INVALID
Invalid command received.
0xC0950002 TLR_E_EIP_DLR_NOT_INITIALIZED

DLR task is not initialized.

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

146/172

© Hilscher, 2015-2016

Status/Error Codes Overview 147/172
Hexadecimal Definition
Value Description
0xC0950003 TLR_E_EIP_DLR_FNC_API_INVALID_HANDLE
Invalid DLR handle at API function call.
0xC0950004 TLR_E_EIP_DLR_INVALID_ATTRIBUTE
Invalid DLR object attribute.
0xC0950005 TLR_E_EIP_DLR_INVALID_PORT
Invalid port.
0xC0950006 TLR_E_EIP_DLR_LINK_DOWN
Port link is down.
0xC0950007 TLR_E_EIP_DLR_MAX_NUM_OF_TASK_INST_EXCEEDED
Maximum number of EtherNet/IP task instances exceeded.
0xC0950008 TLR_E_EIP_DLR_INVALID_TASK_INST
Invalid task instance.
0xC0950009 TLR_E_EIP_DLR_CALLBACK_NOT_REGISTERED
Callback function is not registered.
0xC095000A TLR_E_EIP_DLR_WRONG_DLR_STATE
Wrong DLR state.
0xC095000B TLR_E_EIP_DLR_NOT_CONFIGURED_AS_SUPERVISOR
Not configured as supervisor.
0xC095000C TLR_E_EIP_DLR_INVALID_CONFIG_PARAM
Configuration parameter is invalid.
0xC095000D TLR_E_EIP_DLR_NO_STARTUP_PARAM_AVAIL
No startup parameters available.
0xC095000E EIP_DLR_E_NO_ETH_BUFFER
No Ethernet buffer
0xC0C90001 TLR_E_SOCK_UNSUPPORTED_SOCKET
Unsupport socket domain, type and protocol combination.
0xC0C90002 TLR_E_SOCK_INVALID_SOCKET_HANDLE
Invalid socket handle
0xC0C90003 TLR_E_SOCK_SOCKET_CLOSED
Socket was closed.
0xC0C90004 TLR_E_SOCK_INVALID_OP
The command is invalid for the particular socket
0xC0C90005 TLR_E_SOCK_INVALID_ADDRESS_FAMILY
An invalid address family was used for this socket
0xC0C90006 TLR_E_SOCK_IN_USE
The specified address is already in use.
0xC0C90007 TLR_E_SOCK_HUP
The remote side closed the connection
0xC0C90008 TLR_E_SOCK_WOULDBLOCK
The operation would block

Table 124: Status/Error Codes of EtherNet/I1P Stack

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

Status/Error Codes Overview

148/172

5.2 General EtherNet/IP Error Codes

The following table contains the possible General Error Codes defined within the EtherNet/IP

standard.

General Status Code

(specified hexadecimally)

Status Name

Description

00 Success The service has successfully been performed by the specified
object.
01 Connection failure A connection-elated service failed. This happened at any
location along the connection path.
02 Resource Some resources which were required for the object to perform
unavailable the requested service were not available.
03 Invalid parameter See status code 0x20, which is usually applied in this situation.
value
04 Path segment error | A path segment error has been encountered. Evaluation of the
supplied path information failed.
05 Path destination The path references an unknown object class, instance or
unknown structure element causing the abort of path processing.
06 Partial transfer Only a part of the expected data could be transferred.
07 Connection lost The connection for messaging has been lost.
08 Service not The requested service has not been implemented or has not
supported been defined for this object class or instance.
09 Invalid attribute value | Detection of invalid attribute data
0A Attribute list error An attribute in the Get_Attribute_List or Set_Attribute_List
response has a status not equal to 0.
0B Already in requested | The object is already in the mode or state which has been
mode/state requested by the service
oC Obiject state conflict | The object is not able to perform the requested service in the
current mode or state
0D Object already exists | It has been tried to create an instance of an object which
already exists.
OE Attribute not settable | It has been tried to change a non-modifiable attribute.
OF Privilege violation A check of permissions or privileges failed.
10 Device state conflict | The current mode or state of the device prevents the execution
of the requested service.
11 Reply data too large | The data to be transmitted in the response buffer requires more
space than the size of the allocated response buffer
12 Fragmentation of a | The service specified an operation that is going to fragment a
primitive value primitive data value, i.e. half a REAL data type.
13 Not enough data The service did not supply all required data to perform the
specified operation.
14 Attribute not An unsupported attribute has been specified in the request
supported
15 Too much data More data than was expected were supplied by the service.
16 Object does not exist | The specified object does not exist in the device.
17 Service Fragmentation sequence for this service is not currently active
fragmentation for this data.
sequence not in
progress
18 No stored attribute The attribute data of this object has not been saved prior to the
data requested service.
19 Store operation The attribute data of this object could not be saved due to a

failure

failure during the storage attempt.

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

Status/Error Codes Overview

149/172

General Status Code

(specified hexadecimally)

Status Name

Description

1A Routing failure, The service request packet was too large for transmission on a
request packet too network in the path to the destination. The routing device was
large forced to abort the service.

1B Routing failure, The service response packet was too large for transmission on
response packet too | a network in the path from the destination. The routing device
large was forced to abort the service.

1C Missing attribute list | The service did not supply an attribute in a list of attributes that
entry data was needed by the service to perform the requested behavior.

1D Invalid attribute value | The service returns the list of attributes containing status
list information for invalid attributes.

1E Embedded service An embedded service caused an error.
error

1F Vendor specific error | A vendor specific error has occurred. This error should only
occur when none of the other general error codes can correctly
be applied.

20 Invalid parameter A parameter which was associated with the request was invalid.
The parameter does not meet the requirements of the CIP
specification and/or the requirements defined in the specification
of an application object.

21 Write-once value or | An attempt was made to write to a write-once medium for the
medium already second time, or to modify a value that cannot be changed after
written being established once.

22 Invalid reply received | An invalid reply is received. Possible causes can for instance be
among others a reply service code not matching the request
service code or a reply message shorter than the expectable
minimum size.

23-24 Reserved Reserved for future extension of CIP standard

25 Key failure in path The key segment (i.e. the first segment in the path) does not
match the destination module. More information about which
part of the key check failed can be derived from the object
specific status.

26 Path size Invalid Path cannot be routed to an object due to lacking information or
too much routing data have been included.

27 Unexpected attribute | It has been attempted to set an attribute which may not be set in

in list the current situation.

28 Invalid member ID The Member ID specified in the request is not available within
the specified class/ instance or attribute

29 Member cannot be A request to modify a member which cannot be modified has
set occurred

2A Group 2 only server | This DeviceNet-specific error cannot occur in EtherNet/IP
general failure

2B-CF Reserved Reserved for future extension of CIP standard

DO-FF Reserved for object | An object class specific error has occurred.

class and service
errors

Table 125: General Error Codes according to CIP Standard

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

Appendix 150/172

6 Appendix
6.1 Module and Network Status

This section describes the LED signaling of EtherNet/IP Adapter devices. 2 LEDs display status
information namely the Module Status LED denominated as MS and the network Status LED
denominated as NS.

6.1.1 Module Status

Table 126 lists the possible values of the Module Status and their meanings (Parameter
ulModuleStatus):

Symbolic name Numeric Meaning
value
EIP_MS_NO_POWER | 0 No Power
If no power is supplied to the device, the module status indicator is steady off.
EIP_MS_SELFTEST | 1 Self-Test

While the device is performing its power up testing, the module status indicator
flashes green/red.

EIP_MS_STANDBY | 2 Standby
If the device has not been configured, the module status indicator flashes
green.
EIP_MS_OPERATE | 3 Device operational
If the device is operating correctly, the module status indicator is steady green.
EIP_MS_MINFAULT | 4 Minor fault

If the device has detected a recoverable minor fault, the module status
indicator flashes red.

_) Note: An incorrect or inconsistent configuration would
be considered a minor fault.

EIP_MS_MAJFAULT | 5 Major fault

If the device has detected a non-recoverable major fault, the module status
indicator is steady red.

Table 126: Possible values of the Module Status

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Appendix 151/172

6.1.2 Network Status

Table 127 lists the possible values of the Network Status and their meanings (Parameter
ullNetworkStatus):

Symbolic name Numeric Meaning
value
EIP_NS_NO_POWER 0 Not powered, no IP address

Either the device is not powered, or it is powered but no IP address has
been configured yet.

EIP_NS_NO_CONNECTION | 1 No connections
An IP address has been configured, but no CIP connections are
established, and an Exclusive Owner connection has not timed out.

EIP_NS_CONNECTED 2 Connected
At least one CIP connection of any transport class is established, and an
Exclusive Owner connection has not timed out.

EIP_NS_TIMEOUT 3 Connection timeout

An Exclusive Owner connection for which this device is the target has
timed out. The network status indicator returns to steady green only when
all timed out Exclusive Owner connections are reestablished.

The Network LED turns from flashing red to steady green only when all
connections to the previously timed-out O->T connection points are
reestablished. Timeout of connections other than Exclusive Owner
connections do not cause the indicator to flash red. The Flashing Red
state applies to target connections only.

EIP_NS_DUPIP 4 Duplicate IP
The device has detected that its IP address is already in use.
EIP_NS_SELFTEST 5 Self-Test

The device is performing its power-on self-test (POST). During POST the
network status indicator alternates flashing green and red.

Table 127: Possible values of the Network Status

6.2 Quality of Service (QoS)

6.2.1 Introduction

Quiality of Service, abbreviated as QoS, denotes a mechanism treating data streams according to
their delivery characteristics, of which the by far most important one is the priority of the data
stream. Therefore, in the context of EtherNet/IP QoS means priority-dependent control of Ethernet
data streams. QoS is of special importance for advanced time-critical applications such as CIP
Sync and CIP Motion and is also mandatory for DLR (see section 6.3’"DLR").

In TCP/IP-based protocols, there are two standard mechanisms available for implementing QoS.
These are:

Differentiated Services (abbreviated as DiffServ)
The 802.1D/Q Protocols
which are both described in more detail below.

Introducing QoS means providing network infrastructure devices such as switches and hubs with
means to differentiate between frames with different priority Therefore, these mechanisms tag the
frames by writing priority information into the frames. This is technique is called priority tagging.

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Appendix

152/172

6.2.2 DiffServ

In the definition of an IP v4 frame, the second byte is denominated as TOS. See figure below:

1 1

2

2

2

1 Bytes

Yersion
Length TOS Length ID Offset TTL
6 Bits
DiffSery
CodePoint ECN

Figure 24: TOS Byte in IP v4 Frame Definition

DiffServ is a schematic model for the priority-based classification of IP frames based on an

alternative interpretation of the TOS byte. It has been specified in RFC2474.

The idea of DiffServ consists in redefining 6 bits (i.e. the bits 8 to 13 of the whole IP v4 frame) and
to use them as codepoint. Thus these 6 bits are denominated as DSCP (Differentiated Services
Codepoint) in the context of DiffServ. These 6 bits allow address 63 predefined routing behaviors
which can be applied for routing the frame at the next router and specifies exactly how to process
the frame there. These routing behaviors are called PHBs (Per-hop behavior). A lot of PHBs have
been predefined and the IANA has assigned DSCPs to these PHBs. For a list of these DSCPs
and the assigned PHBs, see http://www.iana.org/assignments/dscp-registry/dscp-registry.xhtml.

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

Appendix 153/172

Mapping of DSCP to EtherNet/IP

The following table shows the default assignment of DSCPs to different kinds of data traffic in
EtherNet/IP which is defined in the CIP specification.

Traffic Type CIP Priority DSCP (numeric) | DSCP (bin)

CIP Class 0 and 1 Urgent (3) 55 110111
Scheduled (2) 47 101111
High (1) 43 101011
Low (0) 31 011111

CIP Class 3 All 27 011011

CIP UCMM

All other encapsulation messages

Table 128: Default Assignment of DSCPs in EtherNet/IP

6.2.3 802.1D/Q Protocol

Another possibility is used by 802.1Q. IEEE 802.1Q is a standard for defining virtual LANs (VLANS)
on an Ethernet network. It introduces an additional header, the IEEE 802.1Q header, which is
located between Source MAC and Ethertype and Size in the standard Ethernet frame.

The IEEE 802.1Q header has the Ethertype 0x8100. It allows to specify
The ID of the Virtual LAN (VLAN ID, 12 bits wide)
And the priority (defined in 802.1D)

Ethernet frame IEEE 802.1Q Header (Tag) Ethertype / Size
Preamble L SalED 0x8100 Control 0x800
MAC MAC
3 1 12 Bits
Priority
Bits] VLAN ID

Figure 25: Ethernet Frame with IEEE 802.1Q Header

As the header definition reserves only 3 bits for the priority (see figure below), only 8 priorities
(levels from 0 to 7) can be used here.

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Appendix 154/172

Mapping of 802.1D/Q to EtherNet/IP

The following table shows the default assignment of 802.1D priorities to different kinds of data
traffic in EtherNet/IP which is defined in the CIP specification.

Traffic Type CIP Priority 802.1D priority
CIP Class 0 and 1 Urgent (3) 6
Scheduled (2) 5
High (1) 5
Low (0) 3
CIP Class 3 All 3
CIP UCMM
All other encapsulation messages

Table 129: Default Assignment of 802.1D/Q Priorities in EtherNet/IP

6.2.4 The QoS Object

Within the EtherNet/IP implementation of QoS, the DiffServ mechanism is usually always present
and does not need to be activated explicitly. In contrast to this, 802.1Q must explicitly be activated
on all participating devices. The main capabilities of the QoS object are therefore:

To enable 802.1Q (VLAN tagging)
To enable setting parameters related to DiffServ (DSCP parameters)

For more information on the QoS object in the Hilscher EtherNet/IP adapter protocol stack see
section “Quality of Service Object (Class Code: 0x48)" of this document.

6.24.1 Enable 802.1Q (VLAN tagging)

The 802.1Q VLAN tagging mechanism can be turned on and off by setting attribute 1 (802.1Q Tag
Enable) of the QoS object to value 1.

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Appendix 155/172

6.3 DLR

This section intends to give a brief and compact overview about the basic facts and concepts of the
DLR (Device level Ring) networking technology supported by Hilscher's EtherNet/IP Adapter
protocol stack.

DLR is a technology (based on a special protocol additionally to Ethernet/IP) for creating a single
ring topology with media redundancy.

It is based on Layer 2 (Data link) of the ISO/OSI model of networking and thus transparent for
higher layers (except the existence of the DLR object providing configuration and diagnosis
capabilities).

In general, there are two kinds of nodes in the network:
Ring supervisors
Ring nodes

DLR requires all modules (both supervisors and normal ring nodes) to be equipped with two
Ethernet ports and internal switching technology.

Each module within the DLR network checks the target address of the currently received DLR
frame whether it matches its own MAC address.

If yes, it keeps the packet and processes it. It will not be propagated any further.
If no, it propagates the packet via the other port which did not receive the packet.

There is a ring topology so that all devices in the DLR network are each connected to two different
neighbors with their two Ethernet ports. In order to avoid looping, one port of the (active) supervisor
is blocked.

6.3.1 Ring Supervisors

There are two kinds of supervisors defined:
Active supervisors

Back-up supervisors

Note: The Hilscher EtherNet/IP stack does not support the ring supervisor mode!

Active supervisors
An active has the following duties:
It periodically sends beacon and announce frames.
It permanently verifies the ring integrity.
It reconfigures the ring in order to ensure operation in case of single faults.
It collects diagnostic information from the ring.
At least one active ring supervisor is required within a DLR network.
Back-up supervisors

It is recommended but not necessary that each DLR network should have at least one back-up
supervisor. If the active supervisor of the network fails, the back-up supervisor will take over the
duties of the active supervisor.

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Appendix 156/172
6.3.2 Precedence Rule for Multi-Supervisor Operation

Multi-Supervisor Operation is allowed for DLR networks. If more than one supervisor is configured
as active on the ring, the following rule applies in order to determine the supervisor which is
relevant:

Each supervisor contains an internal precedence number which can be configured. The supervisor
within the ring carrying the highest precedence number will be the active supervisor, the others will
behave passively and switch back to the state of back-up supervisors.

6.3.3 Beacon and Announce Frames

Beacon frames and announce frames are both used to inform the devices within the ring about the
transition (i.e. the topology change) from linear operation to ring operation of the network.

They differ in the following:
Direction

Beacon frames are sent in both directions.

Announce frames are sent only in one direction of the ring, however.
Frequency

Beacon frames are always sent every beacon interval. Usually, a beacon interval is defined
to have an interval of 400 microseconds. However, beacon frames may be sent even faster
up to an interval of 100 microseconds.

Announce frames are always sent in time intervals of one second.
Support for Precedence Number

Only Beacon frames contain the internal precedence number of the supervisor which sent
them

Support for Network Fault Detection

Loss of beacon frames allows the active supervisor to detect and discriminate various types
of network faults of the ring on its own.

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Appendix 157/172

6.3.4 Ring Nodes

This subsection deals with modules in the ring, which does not have supervisor capabilities. These
are denominated as (normal) ring nodes.

There are two types of normal ring nodes within the network:
Beacon-based

Announce-based
A DLR network may contain an arbitrary number of normal nodes.
Nodes of type beacon-based have the following capabilities
They implement the DLR protocol, but without the ring supervisor capability
They must be able to process beacon frames with hardware assistance
Nodes of type announce-based have the following capabilities
They implement the DLR protocol, but without the ring supervisor capability
They do not process beacon frames, they just forward beacon frames
They must be able to process announce frames

This type is often only a software solution

Note: Hilscher devices running an EtherNet/IP firmware always run as a beacon-based
ring node.

A ring node (independently whether it works beacon-based or announce-based) may have three
internal states.

IDLE_STATE
FAULT_STATE
NORMAL_STATE
For a beacon-based ring node, these states are defined as follows:
IDLE_STATE

The IDLE_STATE is the state which is reached after power-on. In IDLE_STATE the network
operates as linear network, there is no ring support active. If on one port a beacon frame
from a supervisor is received, the state changes to FAULT_STATE.

FAULT_STATE
The Ring node reaches the FAULT_STATE after the following conditions:
A. If a beacon frame from a supervisor is received on at least one port

B. If a beacon frame from a different supervisor than the currently active one is received
on at least one port and the precedence of this supervisor is higher than that of the
currently active one.

The FAULT_STATE provides partial ring support, but the ring is still not fully operative in
FAULT_STATE. If the beacon frames have a time-out on both ports, the state will change to
the IDLE_STATE. If on both ports a beacon frame is received and a beacon frame with
RING_NORMAL_STATE has been received, the state changes to NORMAL_STATE.

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Appendix 158/172

NORMAL_STATE
The Ring node reaches the NORMAL_STATE only after the following condition:

If a beacon frame from the active supervisor is received on both ports and a beacon
frame with RING_NORMAL_STATE has been received

The NORMAL_STATE provides full ring support. The following conditions will cause a
change to the FAULT_STATE:

A. Alink failure has been detected.

B. A beacon frame with RING_FAULT_STATE has been received from the active
supervisor on at least one port.

C. A beacon frame from the active supervisor had a time-out on at least one port

D. A beacon frame from a different supervisor than the currently active one is received on
at least one port and the precedence of this supervisor is higher than that of the
currently active one.

For an announce-based ring node, these states are defined as follows:
IDLE_STATE

The IDLE_STATE is the state which is reached after power-on. It can also be reached from
any other state if the announce frame from the active supervisor has a time-out. In
IDLE_STATE the network operates as linear network, there is no ring support active. If an
announce frame with FAULT_STATE is received from a supervisor, the state changes to
FAULT_STATE.

FAULT_STATE
The Ring node reaches the FAULT_STATE after the following conditions:

If the network is in IDLE_STATE and an announce frame with FAULT_ STATE is
received from any supervisor.

If the network is in NORMAL_STATE and an announce frame with FAULT_STATE is
received from the active or a different supervisor.

If the network is in NORMAL_STATE and a link failure has been detected.

The FAULT_STATE provides partial ring support, but the ring is still not fully operative in
FAULT_STATE.

If the announce frame from the active supervisor has a time-out, the state will fall back to the
IDLE_STATE.

If an announce frame with NORMAL_STATE has been received from the active or a different
supervisor, the state changes to NORMAL_STATE.

NORMAL_STATE
The Ring node reaches the NORMAL_STATE only after the following condition:

If the network is in IDLE_STATE and an announce frame with NORMAL_STATE is
received from any supervisor.

If the network is in FAULT_STATE and an announce frame with NORMAL_STATE is
received from the active or a different supervisor.

The NORMAL_STATE provides full ring support. The following conditions will cause a fall
back to the FAULT_STATE:

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Appendix 159/172

A link failure has been detected.

A announce frame with FAULT _STATE has been received from the active or a different
supervisor.

The following conditions will cause a fall back to the IDLE _STATE:

The announce frame from the active supervisor has a time-out.
6.3.5 Normal Network Operation

In normal operation, the supervisor sends beacon and, if configured, announce frames in order to
monitor the state of the network. Usual ring nodes and back-up supervisors receive these frames
and react. The supervisor may send announce frames once per second and additionally, if an error
is detected.

6.3.6 Rapid Fault/Restore Cycles

Sometimes a series of rapid fault and restore cycles may occur in the DLR network for instance if a
connector is faulty. If the supervisor detects 5 faults within a time period of 30 seconds, it sets a
flag (Rapid Fault/Restore Cycles) which must explicitly be reset by the user then. This can be
accomplished via the “Clear Rapid Faults” service.

6.3.7 States of Supervisor

A ring supervisor may have five internal states.
IDLE_STATE
FAULT_STATE (active)
NORMAL_STATE (active)
FAULT_STATE (backup)
NORMAL_STATE (backup)

For a ring supervisor, these states are defined as follows:
FAULT_STATE (active)

The FAULT_STATE (active) is the state which is reached after power-on if the supervisor
has been configured as supervisor.

The supervisor reaches the FAULT_STATE (active) after the following conditions:
A. As mentioned above, at power-on
B. From NORMAL_STATE (active):

If a link failure occurs or if a link status frame indicating a link failure is received from a
ring node or if the beacon time-out timer expires on one port

C. From FAULT_STATE (backup):

If on both ports there is a time-out of the beacon frame from the currently active
supervisor

The FAULT_STATE (active) provides partial ring support, but the ring is still not fully
operative in FAULT _STATE (active).

If a beacon frame from a different supervisor than the currently active one is received on at
least one port and the precedence of this supervisor is higher, the state will fall back to the
FAULT_STATE (backup).

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Appendix 160/172

If on both ports an own beacon frame has been received, the state changes to
NORMAL_STATE (active).

NORMAL_STATE (active)
The supervisor reaches the NORMAL_STATE (active) only after the following condition:

If an own beacon frame is received on both ports during FAULT_STATE (active).

The NORMAL_STATE provides full ring support.
The following conditions will cause a change to the FAULT_STATE (active):

A. Alink failure has been detected.

B. Alink status frame indicating a link failure is received from a ring node

C. The beacon time-out timer expires on one port
The following conditions will cause a change to the FAULT_STATE (backup):

A. A beacon frame from the active supervisor had a time-out on at least one port

B. If a beacon frame from a different supervisor with higher precedence is received on at
least one port.

FAULT_STATE (backup)
The supervisor reaches the FAULT_STATE (backup) after the following conditions:
A. From NORMAL_STATE (active):

A beacon frame from a supervisor with higher precedence is received on at least one
port.

B. From FAULT_STATE (active):

A beacon frame from a different supervisor with higher precedence and the
precedence of this supervisor is higher.

C. From NORMAL_STATE (backup):
i. Alink failure has been detected.

i. A beacon frame with RING_FAULT_STATE is received from the active
supervisor

iii. The beacon time-out timer (from the active supervisor) expires on one port

iv. A beacon frame from a different supervisor with higher precedence and the
precedence of this supervisor is higher.

D. From IDLE_STATE:
A beacon frame is received from any supervisor on one port

The FAULT_STATE (backup) provides partial ring support, but the ring is still not fully
operative in FAULT_STATE (backup).

The following condition will cause a transition to the FAULT_STATE (active):
i. The beacon time-out timer (from the active supervisor) expires on both ports
The following condition will cause a transition to the NORMAL_STATE (backup):

ii. Beacon frames from the active supervisor are received on both ports and a
beacon frame with RING_NORMAL_STATE has been received.

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Appendix 161/172

The following condition will cause a transition to the IDLE_STATE:
iii. The beacon time-out timer (from the active supervisor) expires on both ports
NORMAL_STATE (backup)
The supervisor reaches the NORMAL_STATE (backup) only after the following condition:

Beacon frames from the active supervisor are received on both ports and a beacon
frame with RING_NORMAL_STATE has been received.

The NORMAL_STATE (backup) provides full ring support. The following conditions will
cause a change to the FAULT_STATE (backup):

A. Alink failure has been detected.

B. A beacon frame with RING_FAULT _STATE has been received from the active
supervisor on at least one port.

C. The beacon time-out timer (from the active supervisor) expires on both ports.

D. A beacon frame from a different supervisor with higher precedence and the
precedence of this supervisor is higher.

IDLE_STATE

The IDLE_STATE is the state which is reached after power-on if the supervisor has not been
configured as supervisor.

In IDLE_STATE the network operates as linear network, there is no ring support active. If on
one port a beacon frame from a supervisor is received, the state changes to FAULT_STATE
(backup).

For more details refer to the DLR specification in reference [4], section “9-5 Device Level Ring”.

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Appendix 162/172

6.4 Quick Connect

6.4.1 Introduction

In many automotive applications, robots, tool changers and framers are required to quickly
exchange tooling fixtures which contain a section or segment of an industrial network. This
requires the network and nodes to be capable of quickly connecting and disconnecting, both
mechanically, and logically.

While the mechanical means for connecting and disconnecting tooling exists, achieving a quick re-
establishment of a logical network connection between a network controller and a fully powered-
down node on Ethernet can take as much as 10 or more seconds. This is too slow for applications
that require very short cycle times.

The time in which a robot arm first makes electrical contact with a new tool, until the mechanical
lock being made, is typically 1 second. In applications where the tools are constantly being
connected and disconnected, the nodes need to be able to achieve a logical connection to the
controller and test the position of the tool in less than 1 second from the time the tool and the robot
make an electrical connection. This means that the node needs to be able to power up and
establish a connection in approximately 500 ms.

It should be noted that controller and robotic application behavior is outside the scope of this
specification.

The Quick Connect feature is an option enabled on a node-by-node basis. When enabled, the
Quick Connect feature will direct the EtherNet/IP target device to quickly power up and join an
EtherNet/IP network.

In order for Quick Connect devices to power up as quickly as possible, manufacturers should
minimize the hardware delay at power-up and reset as much as possible.

The Quick Connect feature is enabled within the device through the non-volatile EtherNet/IP Quick
Connect attribute (12) in the TCP/IP object. A device shall have this feature disabled as the factory
default.

The goal for Quick Connect connection time is 500ms. Specifically, this is defined as the
guaranteed repeatable time between the electrical contact of power and Ethernet signals at the
tool changer, and when the newly connected devices are ready to send the first CIP /O data
packet.

Quick Connect connection time is comprised of several key time durations. The majority of the
Quick Connect connection time is due to the Quick Connect target devices’ power-up time. Also
contributing to the connection time is the amount of time it takes a controller to detect the newly
attached device and send a Forward Open to start the connection process. The overall 500ms
Quick Connect connection time is additive, and consists of the Quick Connect devices’ power-up
time, the controller’'s connection establishment time, and actual network communication time. Also,
the network communication time is dependent on the network topology. For instance, in a linear
topology, the network communication time will be dependent on all devices powering up, plus the
delay through all of the devices. The final application connection time assumes that connections to
ALL of the I/O devices on the tool have been established.

The following figure shows the events, states, and sequence in which a controller shall discontinue
communications with a device on a given tool and then establish a connection to a device on a
new tool. Note: There can be multiple /O devices on the tool. This sequence is repeated for each
connection from the controller to the 1/O devices on the tool.

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Appendix

163/172

* Disconnect from Tool

Disable

Connection Enable

Controller Communication I/F Ethernet Switch Robot Tool Changer I/0 Device (on Tool)
$-§ Place Tool
in Stand
Connection L Forward_Close
< Forward_Close Response
Close TCP Connection
* Disconnect > Mechanigal and Electrical >
Disconnect
Example:
Device Power-Up
- Get New Tool ; Time {from EDS)
* Tool Electrical Loc! Toal
Start Timer i A] < ool starts to engage 0ms
ARP Cach p

Update Cache Gratuitous ARP 350 ms
M&, Open TCP Connection _
Register Session >
» Register Session Response
Send Forward_Open -

” Forward_Open Response

< Send Inputs 500 ms

Send Oulpuls >

Actions marked by * are typical application actions

Figure 26: Quick Connect System Sequence Diagram

There are two classes of Quick Connect devices.

6.4.2

Class A Quick Connect target devices is able to power-up, send the first Gratuitous ARP
packet, and be ready to accept a TCP connection in less than 350ms.

Class B Quick Connect target devices shall be able to power-up, send the first Gratuitous
ARP packet, and be ready to accept a TCP connection in less than 2 seconds.

Requirements

EtherNet/IP target devices supporting Quick Connect must adhere to the following requirements:

In order to be able to establish a physical link as fast as possible all Ethernet ports shall be
set to 100 MBit/s and full duplex

When in Quick Connect mode Quick Connect devices shall not use Auto-MDIX (detection of
the required cable connection type)

To enable the use of straight-thru cables when Auto-MIDX is disabled, the following rules
shall be applied:

A. On a device with only one port: the port shall be configured as MDI.
B. On devices with 2 external Ethernet ports:

The labels for the 2 external ports shall include an ordinal indication (e.g.: Port 1
and Port 2, or A and B)

The port with the lower ordinal indication shall be configured as MDI.
The port with the upper ordinal indication shall be configured as MDIX.

The target device shall support EtherNet/IP Quick Connect attribute (12) in the TCP/IP
Object that enables the Quick Connect feature.

The target device shall have the Quick Connect keywords and values included in the
device’s EDS file.

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

Appendix 164/172

6.5 Hilscher specific CIP services

6.5.1 Common

6.5.1.1 Reset Object (OxFF32)

The Hilscher specific “Reset” service sets the whole object back to its initial state.

Request Service Data Field Parameters:
There are no request service data parameters.
Success Response Service Data Field Parameters:

There are no response service data parameters.

6.5.1.2 Get Attribute Option (OXFF33)

The Hilscher specific “Get Attribute Option” service returns the option flags of the specified
attribute.

Request Service Data Field Parameters:
There are no request service data parameters.

Success Response Service Data Field Parameters:

Name Byte Size Description

/* Flags for access control */

#define CIP_FLG_SET_ACCESS_BUS 0x0000
#define CIP_FLG_SET_ACCESS_USER 0x0010
#define CIP_FLG_SET_ACCESS_ADMIN 0x0020
#define CIP_FLG_SET_ACCESS_NONE 0x0030
Option Flags) #define CIP_FLG_GET_ACCESS_BUS 0x0000
#define CIP_FLG_GET ACCESS_USER 0x0040
#define CIP_FLG_GET_ACCESS_ADMIN 0x0080
#define CIP_FLG_GET_ACCESS_NONE 0Xx00C0

#define CIP_FLG_NOTIFICATION_ENABLE 0x4000
#define CIP_FLG_ATTRIBUTE_DISABLE 0x8000

Table 130: Hilscher Service — Get Attribute Option — Response Data Parameters

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Appendix 165/172

6.5.1.3 Set Attribute Option (OxFF34)

The Hilscher specific “Set Attribute Option” service writes the option flags of the specified attribute.

Request Service Data Field Parameters:

Name Byte Size Description

This mask allows setting specific option flags without touching other flags that
are not of interest.

Option Mask 2
In this mask field set the bits that correspond to the flags you want to set in the
field “Option flags”.
/* Flags for access control */
#define CIP_FLG _SET ACCESS BUS 0x0000
#define CIP_FLG _SET ACCESS_USER 0x0010
#define CIP_FLG_SET_ACCESS_ADMIN 0x0020
#define CIP_FLG_SET_ACCESS_NONE 0x0030
Option Flags 2 #def!ne CIP_FLG_GET_ACCESS_BUS 0x0000
#define CIP_FLG_GET_ACCESS_ USER 0x0040
#define CIP_FLG_GET_ACCESS_ADMIN 0x0080
#define CIP_FLG_GET_ACCESS_NONE 0x00CO0

#define CIP_FLG_NOTIFICATION_ENABLE 0x4000
#define CIP_FLG_ATTRIBUTE_DISABLE 0x8000

Table 131: Hilscher Service — Set Attribute Option — Request Data Parameters

Success Response Service Data Field Parameters:

There are no response service data parameters.

6.5.2 Assembly Object

6.5.2.1 Create (0x0401)

The Hilscher specific “Create” service creates a new assembly instance.

Request Service Data Field Parameters:

Name Byte Size Description

Assembly Instance

D 4 CIP Instance ID
Minimum Size 2 The minimum and maximum size fields define the connection size range that is
allowed for this assembly instance.
Example:
1) Min Size = 4 and Max Size = 4:
Maximum Size 2 The connection size MUST be 4. No other size is allowed.

2) Min Size = 2 and Max Size = 16:
The connection size can be between 2 and 16. If it is 2, then only the
first 2 bytes of this assembly are transmitted via the connection.
#define CIP_AS PARAM_FIX_SIZE 0x0001

Parameter Flags 2

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Appendix 166/172
Name Byte Size Description
#define CIP_AS PARAM_TYPE_ MSK OxFO000
#define CIP_AS_PARAM_TYPE_CONSUMER 0x0000
#define CIP_AS_PARAM_TYPE_PRODUCER 0x1000

#define CIP_AS_PARAM_TYPE_HB_LISTENONLY 0x2000
#define CIP_AS_PARAM_TYPE_HB_INPUTONLY 0x3000

#define CIP_AS_PARAM_TYPE_CONFIG 0x4000
#define CIP_AS_PARAM_RT_FORMAT_MSK 0XOF00
#define CIP_AS_PARAM_RT_FORMAT_PURE 0x0000
#define CIP_AS_PARAM_RT_FORMAT_NULL 0x0100
#define CIP_AS_PARAM_RT_ FORMAT HB 0x0300

#define CIP_AS_PARAM_RT_FORMAT RUNIDLE 0x0400
#define CIP_AS_PARAM_RT_FORMAT_SAFETY 0x0500

Table 132: Hilscher Service — Create — Request Data Parameters

Success Response Service Data Field Parameters:

There are no response service data parameters.

6.5.2.2 Delete (0x0402)

The Hilscher specific “Delete” service deletes an assembly instance.

Request Service Data Field Parameters:

There are no request service data parameters.

Success Response Service Data Field Parameters:

There are no response service data parameters.

6.5.2.3 Add Member (0x0403)

The Hilscher specific “Add member” service adds a member to a specific assembly instance.

Request Service Data Field Parameters:

Name Byte Size Description
Data Size 5 Number of bytes this member occupies (e.g. the byte size of the attribute the
path points to).
Path Size 2 Size of path in bytes (maximum number is 9)
CIP Path to member. Either 8 bit or 16 bit encoded. Encoding is based on the
packed EPATH format described in the CIP specification (Volume 1 Edition
3.16. chapter C-1.4.2).
Example:
Path max. 9 1) 8Bt
[20][08][24][01][30][0C]
Class 8, Instance 1, Attribute 12
2) 16 Bit:

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Appendix

167/172

Name

Byte Size

Description

[21] [10] [00] [25] [02] [00Q] [31] [OC] [00Q]
Class 16, Instance 2, Attribute 12

Table 133: Hilscher Service — Add Member — Request Data Parameters

Success Response Service Data Field Parameters:

There are no response service data parameters.

6.5.2.4 Delete Member (0x0404)

The Hilscher specific “Delete Member” service deletes an assembly member.

Request Service Data Field Parameters:

Name Byte Size Description
Path Size 2 Size of path in bytes (maximum number is 9)
CIP Path to member. Either 8 bit or 16 bit encoded. Encoding is based on the
packed EPATH format described in the CIP specification (Volume 1 Edition
3.16. chapter C-1.4.2).
Example:
3) 8Bit
Path max. 9

[20][08][24][01][30][0C]
Class 8, Instance 1, Attribute 12
4) 16 Bit;
[21] [10] [00] [25] [02] [00] [31] [OC] [00]
Class 16, Instance 2, Attribute 12

Table 134: Hilscher Service — Add Member — Request Data Parameters

Success Response Service Data Field Parameters:

There are no response service data parameters.

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Appendix 168/172
6.6 List of Figures
Figure 1: Default Hilscher Device ODJECt MOUEL...........o et e e e et e e e e e e e et beeeeeaeeeanees
Figure 2: Configuration Sequence Using the Basic Configuration Set
Figure 3: Configuration Sequence Using the Extended Packet Set...............
Figure 4: Non-Volatile CIP OBJECT AMDULEScciiiieiiiiiee ettt e e e et e e e e e et e et e e e s sasabtbaeteeeesasntbaaeeaeeessanee
Figure 5: Sequence Diagram for the EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ/CNF Packet..........c..cc.... 50
Figure 6: Sequence diagram for the EIP_APS_SET_PARAMETER_REQ/CNF PaCKEetcccuvvviiieeeiiiiiiiiie e e 60
Figure 7: Sequence Diagram for the EIP_APS_CONFI1G_DONE_REQ/CNF Packetcccuueiiiiiiiiiiiiiieeeiieeee e 63
Figure 8: Sequence Diagram for the EIP_OBJECT_MR_REGISTER_REQ/CNF Packet for the Stack Packet Set............. 65
Figure 9: Sequence Diagram for the EIP_OBJECT_AS_REGISTER_REQ/CNF Packet for the Stack Packet Set............. 69
Figure 10: Sequence Diagram for the EIP_OBJECT_I1D_SETDEVICEINFO_REQ/CNF Packet for the Stack Packet Set 74
Figure 11: Sequence Diagram for the EIP_OBJECT_REGISTER_SERVICE_REQ/CNF Packet for the Stack Packet Set 79
Figure 12: Sequence Diagram for the EIP_OBJECT_CIP_SERVICE_REQ/CNF Packet for the Stack Packet Set........... 88
Figure 13: Sequence Diagram for the EIP_OBJECT_RESET_IND/RES Packet for the Basic Packet Set............c......... 95
Figure 14: Sequence Diagram for the EIP_OBJECT_CONNECTION_IND/RES Packet for the Stack Packet Set.......... 102
Figure 15: Sequence Diagram for the EIP_OBJECT_CL3_SERVICE_IND/RES Packet for the Stack Packet Set......... 111
Figure 16: Sequence Diagram for the EIP_OBJECT_CL3_SERVICE_IND/RES (Sequence Count Handling— Use case 1)
... 113
Figure 17: Sequence Diagram for the EIP_OBJECT_CL3_SERVICE_IND/RES (Sequence Count Handling— Use case 2)
... 114
Figure 18: Sequence Diagram for the EIP_OBJECT_CL3_SERVICE_IND/RES (Sequence Count Handling — Use case 3)
... 115
Figure 19: Sequence Diagram for the EIP_OBJECT_CL3_SERVICE_IND/RES (Sequence Count Handling— Use case 4)
... 116
Figure 20: Sequence Diagram for the EIP_OBJECT_CIP_OBJECT_CHANGE_ IND/RES Packet for the Stack Packet Set
... 120
Figure 21: Packet sequence for Forward_Open forwarding functionality 127
Figure 22: Packet sequence for Forward_Close forwarding functionality 136
Figure 23: Sequence Diagram for the EIP_APS_GET_MS_NS_REQ/CNF Packet
Figure 24: TOS Byte in IP v4 Frame Definitioncc.c........
Figure 25: Ethernet Frame with IEEE 802.1Q Header

Figure 26

: Quick Connect System Sequence Diagram

EtherNet/

IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Appendix 169/172

6.7

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:

Table 15

Table 16:
Table 17:

Table 18

Table 19:
Table 20:
Table 21:

Tal9ble
Table 23

Table 24:
Table 25:
Table 26:
Table 27:
Table 28:
Table 29:
Table 30:

Table 31
Table 32

Table 33:
Table 34:
Table 35:
Table 36:
Table 37:
Table 38:
Table 39:
Table 40:
Table 41:
Table 42:
Table 43:
Table 44:
Table 45:
Table 46:
Table 47:
Table 48:
Table 49:
Table 50:
Table 51:
Table 52:

Table 53

Table 54:
Table 55:
Table 56:
Table 57:

Table 58

Table 59:
Table 60:
Table 61:
Table 62:

Table 63

List of Tables

[o] = V7S] o] 1= SRS RTR
Terms, Abbreviations and Definitions
Introduction of Class Attribute Description
Introduction of Instance Attribute Description............
Introduction of Service Description............cccccvveeeenn.
Identity Object - Class Attributes.........

Identity Object - Instance Attributes
Identity Object - Common Services
Identity Object - Hilscher Specific Services
Message Router Object - Class Attributes
Message Router Object - Common Services
Message Router Object - HilSCher SPeCIfiC SEIVICEScciiiiiiiiiiiiei e 18
Assembly Object - Class Attributescccccceeeiiiiiiii e,

Assembly Object - Instance Attributes.....................
: Assembly Object - Common Services.....................
Assembly Object - Hilscher Specific Services.........
Connection Manager Object - Class Attributes........
: Connection Manager Object - Instance Attributes
Connection Manager Object - Common Services
Connection Manager Object - Hilscher Specific Services
Time SyNc ObjJect - Class AttHBULESuuiiiiii e e e e e e et e e e e e e s s sstbaeeeaeeessnees
22: Time Sync Object - INStANCE ALIDULESuviiiiiiie e e e st r e e e s e satraee s
: Time Sync Object - Common Services
Time Sync Object - Hilscher Specific Services
Time Sync Object — Attribute 300
DLR Object - Class Attributes...........
DLR Object - Instance Attributes
DLR Object - COMMON SErVICESccceeriinuurieenaannnn

DLR Object - Hilscher Specific Service

QoS Object - Class Attributes...........coccvvvvveeeeeiinnns

2 QOS ODbject - INSTANCE ALIDULESoii i e et e e e e st e e e e e e e s st aeeaaeeesanees
: Quality of Service Object - Common Services
Quality of Service Object - Hilscher Specific Service
TCP/IP Interface Object - Class ALDULEScooi it e e et e e e e e
TCP/IP Interface Object - INStANCe AIDULES.ueiiiie et e e et e e e e e e et aeeeeaaeeeanees
TCP/IP Interface Object - Common ServiCesccccccvveeeeriueneenn.

TCP/IP Interface Object - Hilscher Specific Services.....................

Ethernet Link Object - Class Attributes....................
Ethernet Link Object - Instance Attributes................
Ethernet Link Object - Common Services
Ethernet Link Object — Class-Specific Services.......
Ethernet Link Object - Hilscher Specific Services....
Predefined Connection Object - Class Attributes
Predefined Connection Object - Instance Attributes
Predefined Connection Object - Common Services
Predefined Connection Object - Hilscher Specific Services
10 Mapping ODjJECt - ClIass AIDULEScoiiiiiiiiie ettt e s e e e e s e e e e e e s satbaa e e e e e e s sasanraeaaaeaan
10 Mapping ODbjJect - INStANCE AIIDULES..........uiiiiiiee e e e e e e e s et e e e e e e s easarraeaaaeaan
10 Mapping Object - Common Services..................

10 Mapping Object - Hilscher Specific Services......

Configuration SetsS.........ccccoiiiiiiiiiiiee e

Basic Configuration Set - Configuration Packets
: Additional Request Packets Using the Basic Configuration Set..............eeeiiiiiiiiiiiiiie e

Indication Packets Using the Basic Configuration SEt............cooiiiiiiiieiiiiiiiiiiiee et e et e e e ssinrraeeaa e 43
Extended Configuration Set - Configuration PACKELScccuiiiiiiiiiiiiiiiii e e e e eaees 45
Additional Request Packets Using the Basic Configuration Set..........cccccvviiiiiiiiiiiiiie e e 45
Indication Packets Using the Extended Packet Set............oiiiiiiiiiiiiiii et a e 46
: Overview over the configuration packets of the EtherNet/IP Adapter...........ooo i 49
EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_REQ - Set Configuration Parameters Request...52
EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_REQ - Configuration Parameter Set V3.............. 56
Meaning Of CONENtS OF FIAGS AT ..o ettt e e e e e et et e e e e e e anebeeeeaaeaeannes 57
Input Assembly Flags/ Output ASSEMDIY FIAGScooiiieiiiii e 58

:EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_CNF - Set Configuration Parameters Confirmation

Table 64
Table 65

:EIP_APS_SET_PARAMETER_REQ FlagS.....cccccooieiiiiieeiiiie e
:EIP_APS_SET_PARAMETER_REQ - Set Parameter Flags Request

EtherNet/IP Adapter | Protocol API

DOC150

401APIO3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Appendix 170/172

Table 66: EIP_APS_SET_PARAMETER_CNF — Confirmation to Set Parameter Flags Requestccccccvvvevieeiiiiinnenn.
Table 67: EIP_APS_CONFIG_DONE_REQ — Signal end of configuration reqUest..............ccoiiiiiiiiiiiiieeei e
Table 68: EIP_APS_CONFIG_DONE_CNF — Confirmation of end of configuration Request...........ccccccccovvviiiiiieeeieiciinennn.
Table 69: Address Ranges for the UBCIASS PAramMELETcoii ittt e e e sttt e e e e e et e e e e e e e e nneeeeeas
Table 70: EIP_OBJECT_MR_REGISTER_REQ - Request Command for register a new class object

Table 71: EIP_OBJECT_MR_REGISTER_CNF — Confirmation Command of register a new class object..............ccccuueee.. 67
Table 72: Assembly INStance NUMDEN RANGESooii ittt e e e e st e e e e e s e e nnreeee e e e e e e ennereeeas 68
Table 73: EIP_OBJECT_AS_REGISTER_REQ — Request Command for create an Assembly Instance..................cc........ 70
Table 74: Assembly INStANCE ProPerty FIAgSuuuiiiiiii it e s e e e e e s e e e e e e s e s tn b e e e e e e e easnaebaees 71
Table 75: EIP_OBJECT_AS_REGISTER_CNF — Confirmation Command of register a new class object..............cccueee... 73
Table 76: EIP_OBJECT_ID_SETDEVICEINFO_REQ — Request Command for open a new connection..................c........ 76
Table 77: EIP_OBJECT_ID_SETDEVICEINFO_CNF — Confirmation Command of setting device information................. 78

Table 78: EIP_OBJECT_READY_REQ - REQISIEr SEIVICEuvviiiiiiiiiiiiiiiie e e ettt e e e et e e e e st e e e e e s et e e e e e e e e e nanaaees
Table 79: EIP_OBJECT_READY_CNF — Confirmation Command for Register Service Request
Table 80: EIP_OBJECT_SET_PARAMETER_REQ — Packet StatUS/EITOrcciiiiiiiiiiiiiieeee e eiiiieeeeee

Table 81: EIP_OBJECT_SET_PARAMETER_REQ — Set Parameter Request Packet...........cccccocviiieiieciiiiiiiicce e
Table 82: EIP_OBJECT_SET_PARAMETER_CNF — Set Parameter Confirmation Packet............ccccccceeiiiiiiiienee e
Table 83: Generic Error (Variable ULGRC).........cuuviiiieiiiiiiiecee et

Table 84: Extended error codes for the connection manager
Table 85: EIP_OBJECT_CIP_SERVICE_REQ — CIP Service Request
Table 86: EIP_OBJECT_CIP_SERVICE_CNF — Confirmation to CIP Service Request
Table 87 RCX_SET_FW_PARAMETER_REQ ParameterIDcccuuiiiiiiiiiiiiiiiee ettt e e et e e e e iaavaee s
Table 88: Overview over the indications of the EtherNet/IP Adapter
Table 89: AlloWed Values Of UBRESETETYP ..ottt e ettt e e e e e e et bt et e e e e e s e n b beeeee e e e s aannnteeeeaaeeaaannseeeeas
Table 90: EIP_OBJECT_RESET__IND — Reset Request from Bus INiCAtioNcoociiiiiiiieiiiiiiiiicc e
Table 91: EIP_OBJECT_RESET_RES — Response to Indication to Reset Request
Table 92: Meaning of variable ulConnectionState
Table 93: Meaning of variable bConnType.........cccccceeeiiiinneen.

Table 94: Meaning of Variable DP FEOF Y ..o e e e e st e e e e e e s e s bt e e e e e e e eananebaees
Table 95: Coding of TIMEOUL MUIIPIET VAIUESciiii ittt e e e et e e e s s et e e e e e e e e snntbaees
Table 96: Meaning of Variable bTriggerType
Table 97: Meaning of Variable USOTCONNPAKAM...........coiuuiiiiiee ittt ee e et e e e e e s s e e e e e s es bt e et e e e s s s aatbaeeeaeeeassnsreees
LI 101 LT LS T o T 1A O EPPRR PP
Table 99: Connection Type
LI Lo LT K0 [0 B = T 1 YO EPPRR TP
Table 101: EIP_OBJECT_CONNECT ION_IND — Indication of CONNECLIONcoiiiiiiiiiiiiiiiaai e
Table 102: Specified Ranges of numeric Values of Service Codes (Variable ulService)...
Table 103: Service Codes for the Common Services according to the CIP specification.............cccccceiiiiiiiiiiiiiniiiee.
Table 104: Most common General STAtUS COUES.........coiiuiiiiiiiii ittt sb bt et b e e e st e e snneeesnibeee s
Table 105: Service Indication Use Cases and Sequence Count Handling..............cccuvv.e...

Table 106: EIP_OBJECT_CL3_SERVICE_IND - Indication of acyclic Data Transfer

Table 107: EIP_OBJECT_CL3_SERVICE_RES — Response to Indication of acyclic Data Transfer...........ccccccccoeevvvneen.. 119
Table 108: EIP_OBJECT_CIP_OBJECT_CHANGE_IND — CIP Object Change INdiCation..............cocovoveueeeeeeeeerrennn. 121
Table 109: EIP_OBJECT_CIP_OBJECT_CHANGE_RES — Response to CIP Object Change Indication.......................... 122

Table 110: RCX_LINK_STATUS_CHANGE_IND_T - Link Status Change Indication
Table 111: Structure RCX_LINK_STATUS_CHANGE_IND_DATA T .oiiiiiiiieeiiiie ettt ettt st s
Table 112: RCX_LINK_STATUS_CHANGE_RES_T - Link Status Change RESPONSE.........cccceiiiiiiiiiiiieeiiiiiiiereeeeeesniveeeas
Table 113:EI1P_OBJECT_LFWD_OPEN_FWD_IND — Forward_Open iNdiCation.............ueeiieaiiiiiiiiiiee e
Table 114: EIP_CM_APP_LFWOPEN_IND_T - Forward_Open request datal...........ccuueeeriaaiiiiiiiiei e ee e
Table 115: EIP_OBJECT_LFWD_OPEN_FWD_RES — Response of Forward_Open indication

Table 116: EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND — Forward_Open completion indication
Table 117: EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_RES — Response of Forward_Open completion indication.. 134
Table 118:E1P_OBJECT_FWD_CLOSE_FWD_IND — Forward_Close request indication
Table 119: EIP_CM_APP_FWCLOSE_IND_T - Forward_Close request data.............ccccueeeeeeeiiiiiineeneenn.
Table 120: EIP_OBJECT_FWD_CLOSE_FWD_RES — Response of Forward_Close indication
Table 121: Overview over the additional services of the EtherNet/IP Adapter...........cccvvveiieeiiiiiiiiii e
Table 122: EIP_APS_GET_MS_NS_REQ — Get Module Status/ Network Status Requestcccceeeiiiiiiieiee e,
Table 123: EIP_APS_GET_MS_NS_CNF — Confirmation of Get Module Status/ Network Status Request....
Table 124: Status/Error Codes 0F ETherNET/IP STACKcooi i
Table 125: General Error Codes according to CIP Standardoooiioiiiiiiiiiie et a e
Table 126: Possible values of the Module Status
Table 127: Possible values Of the NEetWOIK STAUSoeiiiiiiiei et e e e e e e e eeeeas
Table 128: Default Assignment of DSCPS iN EtNEINEIPooiiiiiiiiiiicc et a e
Table 129: Default Assignment of 802.1D/Q Priorities in EtherNet/IP
Table 130: Hilscher Service — Get Attribute Option — Response Data Parameters
Table 131: Hilscher Service — Set Attribute Option — Request Data Parameters..........cccccveeeiviiiiieeiee e

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Appendix 171/172

Table 132: Hilscher Service — Create — Request Data Parametersooooiuiiiiiiaaiiiiiiiee et a e 166
Table 133: Hilscher Service — Add Member — Request Data Parameters...........cocooiiiiiiiiiiieeiiiiiiieer et e e 167
Table 134: Hilscher Service — Add Member — Request Data Parameters...........c.cooiiiiiiiiiriee it e e 167

EtherNet/IP Adapter | Protocol API
DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public © Hilscher, 2015-2016

Appendix

172/172

6.8 Contacts

Headquarters

Germany

Hilscher Gesellschaft fir
Systemautomation mbH
Rheinstrasse 15

65795 Hattersheim

Phone: +49 (0) 6190 9907-0
Fax: +49 (0) 6190 9907-50
E-Mail: info@hilscher.com

Support
Phone: +49 (0) 6190 9907-99
E-Mail: de.support@hilscher.com

Subsidiaries

China

Hilscher Systemautomation (Shanghai) Co. Ltd.

200010 Shanghai
Phone: +86 (0) 21-6355-5161
E-Mail: info@hilscher.cn

Support
Phone: +86 (0) 21-6355-5161
E-Mail: cn.support@hilscher.com

France

Hilscher France S.a.r.l.
69500 Bron

Phone: +33 (0) 4 72 37 98 40
E-Mail: info@hilscher.fr

Support
Phone: +33 (0) 4 72 37 98 40
E-Mail: fr.support@hilscher.com

India

Hilscher India Pvt. Ltd.
Pune, Delhi, Mumbai
Phone: +91 8888 750 777
E-Mail: info@hilscher.in

Italy

Hilscher Italia S.r.I.

20090 Vimodrone (MI)

Phone: +39 02 25007068
E-Mail: info@hilscher.it
Support

Phone: +39 02 25007068
E-Mail: it.support@hilscher.com

Japan

Hilscher Japan KK

Tokyo, 160-0022

Phone: +81 (0) 3-5362-0521
E-Mail: info@hilscher.jp
Support

Phone: +81 (0) 3-5362-0521
E-Mail: jp.support@hilscher.com

Korea

Hilscher Korea Inc.

Seongnam, Gyeonggi, 463-400
Phone: +82 (0) 31-789-3715
E-Mail: info@hilscher.kr

Switzerland

Hilscher Swiss GmbH

4500 Solothurn

Phone: +41 (0) 32 623 6633
E-Mail: info@hilscher.ch
Support

Phone: +49 (0) 6190 9907-99
E-Mail: ch.support@hilscher.com

USA

Hilscher North America, Inc.
Lisle, IL 60532

Phone: +1 630-505-5301

E-Mail: info@hilscher.us
Support

Phone: +1 630-505-5301

E-Mail: us.support@hilscher.com

EtherNet/IP Adapter | Protocol API

DOC150401API0O3EN | Revision 3 | English | 2016-01 | Released | Public

© Hilscher, 2015-2016

mailto:info@hilscher.com
mailto:de.support@hilscher.com
mailto:info@hilscher.cn
mailto:cn.support@hilscher.com
mailto:info@hilscher.fr
mailto:fr.support@hilscher.com
mailto:info@hilscher.in
mailto:info@hilscher.it
mailto:it.support@hilscher.com
mailto:info@hilscher.jp
mailto:jp.support@hilscher.com
mailto:info@hilscher.kr
mailto:info@hilscher.ch
mailto:ch.support@hilscher.com
mailto:info@hilscher.us
mailto:us.support@hilscher.com

	1 Introduction
	1.1 Abstract
	1.2 List of Revisions
	1.3 System Requirements
	1.4 Intended Audience
	1.5 Specifications
	1.5.1 Technical Data
	1.5.2 Limitations

	1.6 Terms, Abbreviations and Definitions
	1.7 References
	1.8 Legal Notes
	1.8.1 Copyright
	1.8.2 Important Notes
	1.8.3 Exclusion of Liability
	1.8.4 Export

	2 Available CIP Classes in the Hilscher EtherNet/IP Stack
	2.1 Introduction
	2.1.1 Class Attributes
	2.1.2 Instance Attributes
	2.1.3 Services

	2.2 Identity Object (Class Code: 0x01)
	2.2.1 Class Attributes
	2.2.2 Instance Attributes
	2.2.3 Supported Services
	2.2.3.1 Common services coming from the EtherNet/IP network or host application
	2.2.3.2 Hilscher specific services coming from the host application

	2.3 Message Router Object (Class Code: 0x02)
	2.3.1 Class Attributes
	2.3.2 Instance Attributes
	2.3.3 Supported Services
	2.3.3.1 Common services coming from the EtherNet/IP network or host application
	2.3.3.2 Hilscher specific services coming from the host application

	2.4 Assembly Object (Class Code: 0x04)
	2.4.1 Class Attributes
	2.4.2 Instance Attributes
	2.4.3 Supported Services
	2.4.3.1 Common services coming from the EtherNet/IP network or host application
	2.4.3.2 Hilscher specific services coming from the host application

	2.5 Connection Manager Object (Class Code: 0x06)
	2.5.1 Class Attributes
	2.5.2 Instance Attributes
	2.5.3 Supported Services
	2.5.3.1 Common services coming from the EtherNet/IP network or host application
	2.5.3.2 Hilscher specific services coming from the host application

	2.6 Time Sync Object (Class Code: 0x43)
	2.6.1 Class Attributes
	2.6.2 Instance Attributes
	2.6.3 Supported Services
	2.6.3.1 Common services coming from the EtherNet/IP network or host application
	2.6.3.2 Hilscher specific services coming from the host application

	2.6.4 Instance Attributes
	2.6.4.1 Attribute 300 - Sync Parameters

	2.7 Device Level Ring Object (Class Code: 0x47)
	2.7.1 Class Attributes
	2.7.2 Instance Attributes
	2.7.3 Supported Services
	2.7.3.1 Common services coming from the EtherNet/IP network or host application
	2.7.3.2 Hilscher specific services coming from the host application

	2.8 Quality of Service Object (Class Code: 0x48)
	2.8.1 Class Attributes
	2.8.2 Instance Attributes
	2.8.3 Supported Services
	2.8.3.1 Common services coming from the EtherNet/IP network or host application
	2.8.3.2 Hilscher specific services coming from the host application

	2.9 TCP/IP Interface Object (Class Code: 0xF5)
	2.9.1 Class Attributes
	2.9.2 Instance Attributes
	2.9.3 Supported Services
	2.9.3.1 Common services coming from the EtherNet/IP network or host application
	2.9.3.2 Hilscher specific services coming from the host application

	2.10 Ethernet Link Object (Class Code: 0xF6)
	2.10.1 Class Attributes
	2.10.2 Instance Attributes
	2.10.3 Supported Services
	2.10.3.1 Common services coming from the EtherNet/IP network or host application
	2.10.3.2 Class-Specific services coming from the EtherNet/IP network or host application
	2.10.3.3 Hilscher specific services coming from the host application

	2.11 Predefined Connection Object (Class Code: 0x401)
	2.11.1 Class Attributes
	2.11.2 Instance Attributes
	2.11.3 Supported Services
	2.11.3.1 Common services coming from the EtherNet/IP network or host application
	2.11.3.2 Hilscher specific services coming from the host application

	2.12 IO Mapping Object (Class Code: 0x402)
	2.12.1 Class Attributes
	2.12.2 Instance Attributes
	2.12.3 Supported Services
	2.12.3.1 Common services coming from the EtherNet/IP network or host application
	2.12.3.2 Hilscher specific services coming from the host application

	3 Getting Started/ Configuration
	3.1 Configuration Procedures
	3.1.1 Using the Configuration Tool SYCON.net
	3.1.2 Using the netX configuration and diagnostic utility
	3.1.3 Using the Packet API of the EtherNet/IP Protocol Stack

	3.2 Configuration Using the Packet API
	3.2.1 Basic Configuration Set
	3.2.1.1 Configuration Packets
	3.2.1.2 Optional Request Packets
	3.2.1.3 Indication Packets the Host Application Needs to Handle
	3.2.1.4 Configuration Sequence

	3.2.2 Extended Configuration Set
	3.2.2.1 Configuration Packets
	3.2.2.2 Optional Request Packets
	3.2.2.3 Indication Packets the Host Application Needs to Handle
	3.2.2.4 Configuration Sequence

	3.3 Example Configuration Process
	3.3.1 Handling of Configuration Data Changes

	4 The Application Interface
	4.1 Configuring the EtherNet/IP Adapter
	4.1.1 Configure the Device with Configuration Parameter
	4.1.2 Set Parameter Flags
	4.1.3 Finish configuration of CIP Objects
	4.1.4 Register an additional Object Class at the Message Router
	4.1.5 Register a new Assembly Instance
	4.1.6 Set the Device’s Identity Information
	4.1.7 Register Service
	4.1.8 Set Parameter
	4.1.9 CIP Service Request
	4.1.10 Set Watchdog Time
	4.1.11 Register Application
	4.1.12 Start/Stop Communication
	4.1.13 Channel Init
	4.1.14 Modify Firmware Parameter

	4.2 Acyclic events indicated by the stack
	4.2.1 Indication of a Reset Request from the network
	4.2.2 Connection State Change Indication
	4.2.3 Indication of acyclic Data Transfer
	4.2.4 CIP Object Change Indication
	4.2.5 Link Status Change
	4.2.6 Forward_Open Indication
	4.2.7 Forward_Open_Completion Indication
	4.2.8 Forward_Close Indication

	4.3 Additional services requested by the application
	4.3.1 Get Module Status/ Network Status
	4.3.2 Get Watchdog Time
	4.3.3 Get DPM I/O Information
	4.3.4 Unregister Application
	4.3.5 Delete Configuration
	4.3.6 Lock/Unlock Configuration
	4.3.7 Get Firmware Parameter
	4.3.8 Get Firmware Identification

	5 Status/Error Codes Overview
	5.1 Stack Specific Error Codes
	5.2 General EtherNet/IP Error Codes

	6 Appendix
	6.1 Module and Network Status
	6.1.1 Module Status
	6.1.2 Network Status

	6.2 Quality of Service (QoS)
	6.2.1 Introduction
	6.2.2 DiffServ
	6.2.3 802.1D/Q Protocol
	6.2.4 The QoS Object
	6.2.4.1 Enable 802.1Q (VLAN tagging)

	6.3 DLR
	6.3.1 Ring Supervisors
	6.3.2 Precedence Rule for Multi-Supervisor Operation
	6.3.3 Beacon and Announce Frames
	6.3.4 Ring Nodes
	6.3.5 Normal Network Operation
	6.3.6 Rapid Fault/Restore Cycles
	6.3.7 States of Supervisor

	6.4 Quick Connect
	6.4.1 Introduction
	6.4.2 Requirements

	6.5 Hilscher specific CIP services
	6.5.1 Common
	6.5.1.1 Reset Object (0xFF32)
	6.5.1.2 Get Attribute Option (0xFF33)
	6.5.1.3 Set Attribute Option (0xFF34)

	6.5.2 Assembly Object
	6.5.2.1 Create (0x0401)
	6.5.2.2 Delete (0x0402)
	6.5.2.3 Add Member (0x0403)
	6.5.2.4 Delete Member (0x0404)

	6.6 List of Figures
	6.7 List of Tables
	6.8 Contacts

